Specific triggering of the Fas signal transduction pathway in normal human keratinocytes. 1996

R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
Veterans Administration Palo Alto Health Care System, Palo Alto, California 94304, USA. khavari@cmgm.stanford.edu

The epidermis is continually exposed to genotoxic injury and requires an efficient mechanism to eliminate genetically altered cells. The membrane receptor, Fas, initiates apoptosis in many cell types, including keratinocytes. Receptor cross-linking is the vital post-ligand binding step in Fas signal transduction, and we have utilized FK1012, capable of oligomerizing proteins engineered to contain the FK506 binding protein (FKBP), to trigger Fas via FKBP-linked receptor cytoplasmic domains in human keratinocytes. An FKBP chimera containing the Fas cytoplasmic domain targeted to the plasma membrane induced an up to 89% decrease in viability of keratinocytes, as reflected by the activity of constitutive promoters, in response to FK1012. Oligomerization of Fas, either with engineered Fas.FKBP by FK1012 or via antibody cross-linking of full-length Fas-induced cellular changes consistent with apoptosis. The lpr Fas point mutation abolished this effect. A Fas.FKBP construct unlinked to the membrane was fully active in this assay. Early developmental age or pre-treatment of cells with GM-CSF, TGF-beta, EGF, KGF, IFN-gamma, or phorbol ester failed to protect against Fas effects. These findings reveal that the Fas signal transduction pathway is active in keratinocytes, requires no induction, and dominantly overrides growth stimuli.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D016559 Tacrolimus A macrolide isolated from the culture broth of a strain of Streptomyces tsukubaensis that has strong immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation in vitro. Anhydrous Tacrolimus,FK-506,FK506,FR-900506,Prograf,Prograft,Tacrolimus Anhydrous,Anhydrous, Tacrolimus,FK 506,FR 900506,FR900506,Tacrolimus, Anhydrous

Related Publications

R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
November 1996, The Journal of dermatology,
R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
February 2001, International journal of oncology,
R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
April 1999, Experimental dermatology,
R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
August 1992, Experimental dermatology,
R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
January 2000, Seikagaku. The Journal of Japanese Biochemical Society,
R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
January 2005, The Journal of investigative dermatology,
R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
January 1999, Journal of bacteriology,
R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
June 2000, Science (New York, N.Y.),
R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
June 1999, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery,
R A Freiberg, and D M Spencer, and K A Choate, and P D Peng, and S L Schreiber, and G R Crabtree, and P A Khavari
June 2007, Journal of cutaneous pathology,
Copied contents to your clipboard!