Two-band model of heterochromatic flicker. 1977

D H Kelly, and D van Norren

We have attempted to reconcile the results of several recent chromatic flicker studies. By adjusting the relative amplitudes of red and green sine-wave stimuli that were flickering in opposite phase, we obtained conditions varying from purely chromatic (red-green) stimulation, through each "silent-cone" condition, to purely luminous (homochromatic) stimulation. We also tested the effects of adapting backgrounds in each condition. Our results can be explained in terms of a low-frequency band that represents the opponent-color response, and a high-frequency band that represents the achromatic response. These two bands respond in various proportions, depending on the red-green stimulus ratio. Chromatic adaptation generally affects the low- and high-frequency bands differently and hence changes the shape of the flicker sensitivity curve. However, if the temporally varying waveform and the adapting background are both chosen to stimulate the same cone type, then the opponent-color and achromatic bands are both attenuated by the same amount. In this case, the shapes of the silent-red and silent-green flicker curves are preserved under chromatic adaptation. We conclude that none of these flicker curves are controlled by the temporal characteristics of independent cone types.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D H Kelly, and D van Norren
October 2004, Archives of biochemistry and biophysics,
D H Kelly, and D van Norren
February 1971, Journal of the Optical Society of America,
D H Kelly, and D van Norren
July 1986, Journal of the Optical Society of America. A, Optics and image science,
D H Kelly, and D van Norren
March 2016, Investigative ophthalmology & visual science,
D H Kelly, and D van Norren
March 2005, Investigative ophthalmology & visual science,
D H Kelly, and D van Norren
December 1987, Journal of the Optical Society of America. A, Optics and image science,
Copied contents to your clipboard!