Pancreatic acinar cells: localization of acetylcholine receptors and the importance of chloride and calcium for acetylcholine-evoked depolarization. 1977

N Iwatsuki, and O H Petersen

1. Intracellular micro-electrode recordings of acinar cell membrane potential and resistance were made from the mouse pancreas superfused in vitro. The acinar cells under investigation were stimulated by micro-iontophoretic ACh application from an extracellular AChCl-filled micro-electrode.2. Passing short-lasting ejecting current pulses through the AChCl-electrode caused acinar cell depolarization when the electrode was in an extracellular position not far (< 50 mum) from an acinus impaled by a KCl micro-electrode. After insertion of the AChCl electrode into a neighbouring acinar cell, electrically coupled to the acinar cell already impaled by the KCl-electrode, ejecting ACh current pulses only affected the membrane potential in a direct electrical manner whereas there was no sign of an effect of ACh on the membrane potential.3. Replacing extracellular chloride by sulphate caused a marked increase in the amplitude of the ACh-evoked depolarization. If the membrane potential was recorded with a KCl electrode ACh continued to evoke very large depolarizations even after more than 1 hr exposure to Cl-free solution. If the membrane potential was recorded with a K-citrate electrode the effect of Cl-removal was only transient. Removal of Na(+) during exposure to Cl-free solution reduced the amplitude of the ACh-evoked depolarization somewhat. Readmission of Cl after more than 1 hr of Cl deprivation caused an immediate reversal of the ACh effect into a hyperpolarization.4. Removal of extracellular Ca(2+) caused a marked reduction in the amplitude of small depolarizations evoked by just suprathreshold doses of ACh, whereas there was very little effect on larger depolarizations evoked by maximal or supramaximal ACh ejections. The effect of Ca removal was fully reversible. Addition of Mn after Ca-deprivation was as efficient as Ca in restoring normal electrophysiological responses to small doses of ACh.5. The acinar cell membrane seems only to be responsive to ACh added to the extracellular side and ACh probably causes an increase in membrane Cl permeability in addition to the previously described effects on Na and K permeability. Ca may be important in determining ACh receptor sensitivity.

UI MeSH Term Description Entries
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013431 Sulfates Inorganic salts of sulfuric acid. Sulfate,Sulfates, Inorganic,Inorganic Sulfates
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

N Iwatsuki, and O H Petersen
September 1989, Quarterly journal of experimental physiology (Cambridge, England),
N Iwatsuki, and O H Petersen
April 1974, The Journal of physiology,
N Iwatsuki, and O H Petersen
February 1989, Pflugers Archiv : European journal of physiology,
N Iwatsuki, and O H Petersen
September 1980, The Journal of physiology,
N Iwatsuki, and O H Petersen
January 2001, Pflugers Archiv : European journal of physiology,
N Iwatsuki, and O H Petersen
September 1981, The Journal of physiology,
N Iwatsuki, and O H Petersen
September 1968, The Journal of physiology,
Copied contents to your clipboard!