The early stimulation of glycolysis by epidermal growth factor in isolated rat hepatocytes is secondary to the glycogenolytic effect. 1995

I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain.

We have studied the relationship between the effect of epidermal growth factor (EGF) on glycogen metabolism and its effect on glycolysis, in rat hepatocyte suspensions. Although 10 nM glucagon or 10 microM adrenaline increased glycogen degradation by more than 120%, 10 nM EGF increased glycogenolysis by less than 20% in hepatocytes incubated in glucose-free medium. Both glucagon and adrenaline increased phosphorylase a activity by more than 130%; EGF increased this activity by about 30%. Under basal conditions, 65% of the glucosyl residues were released as free glucose and about 30% ended up as C3 molecules (lactate and pyruvate). Both glucagon and adrenaline decreased the proportion of glucosyl units that rendered glycolysis end-products (to 2% for glucagon and 6% for adrenaline) and increased the proportion that ended up as free glucose (to 94% and 88% of the glucosyl residues for glucagon and adrenaline respectively). EGF increased the production of both free glucose and lactate+pyruvate, but the proportion of glucosyl residues that ended up as free glucose or glycolysis end-products was unchanged. In glycogen-depleted hepatocytes incubated in the presence of 25 mM glucose, EGF affected neither glycogen deposition nor glycolysis. EGF increased cytosolic free Ca2+, and neomycin decreased both the Ca2+ signal and the glycogenolytic effect. In conclusion, our results indicate that the effect of EGF on glycolysis is secondary to the Ca(2+)-mediated stimulation of glycogenolysis in rat hepatocyte suspensions.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009355 Neomycin Aminoglycoside antibiotic complex produced by Streptomyces fradiae. It is composed of neomycins A, B, and C, and acts by inhibiting translation during protein synthesis. Fradiomycin Sulfate,Neomycin Palmitate,Neomycin Sulfate
D010762 Phosphorylase a The active form of GLYCOGEN PHOSPHORYLASE that is derived from the phosphorylation of PHOSPHORYLASE B. Phosphorylase a is deactivated via hydrolysis of phosphoserine by PHOSPHORYLASE PHOSPHATASE to form PHOSPHORYLASE B.
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
August 1983, FEBS letters,
I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
November 1992, Comparative biochemistry and physiology. B, Comparative biochemistry,
I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
July 1994, Biochemical and biophysical research communications,
I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
October 1988, The Biochemical journal,
I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
November 1986, Biochimica et biophysica acta,
I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
May 1981, Biochemical and biophysical research communications,
I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
March 1997, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
June 1995, Hepatology (Baltimore, Md.),
I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
March 1991, The American journal of physiology,
I Quintana, and M Grau, and F Moreno, and C Soler, and I Ramírez, and M Soley
January 1984, Tissue & cell,
Copied contents to your clipboard!