Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. 1996

L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.

Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease that is associated with a (CTG)n repeat expansion in the 3'-untranslated region of the myotonin protein kinase (Mt-PK) gene. This study reports the isolation and characterization of a (CUG)n triplet repeat pre-mRNA/mRNA binding protein that may play an important role in DM pathogenesis. Two HeLa cell proteins, CUG-BP1 and CUG-BP2, have been purified based upon their ability to bind specifically to (CUG)8 oligonucleotides in vitro. While CUG-BP1 is the major (CUG)8-binding activity in normal cells, nuclear CUG-BP2 binding activity increases in DM cells. Both CUG-BP1 and CUG-BP2 have been identified as isoforms of a novel heterogeneous nuclear ribonucleoprotein (hnRNP), hNab50. The CUG-BP/hNab50 protein is localized predominantly in the nucleus and is associated with polyadenylated RNAs in vivo. In vitro RNA-binding/photocrosslinking studies demonstrate that CUG-BP/hNab50 binds to RNAs containing the Mt-PK 3'-UTR. We propose that the (CUG)n repeat region in Mt-PK mRNA is a binding site for CUG-BP/hNab50 in vivo, and triplet repeat expansion leads to sequestration of this hnRNP on mutant Mt-PK transcripts.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009223 Myotonic Dystrophy Neuromuscular disorder characterized by PROGRESSIVE MUSCULAR ATROPHY; MYOTONIA, and various multisystem atrophies. Mild INTELLECTUAL DISABILITY may also occur. Abnormal TRINUCLEOTIDE REPEAT EXPANSION in the 3' UNTRANSLATED REGIONS of DMPK PROTEIN gene is associated with Myotonic Dystrophy 1. DNA REPEAT EXPANSION of zinc finger protein-9 gene intron is associated with Myotonic Dystrophy 2. Dystrophia Myotonica,Myotonic Dystrophy, Congenital,Myotonic Myopathy, Proximal,Steinert Disease,Congenital Myotonic Dystrophy,Dystrophia Myotonica 1,Dystrophia Myotonica 2,Myotonia Atrophica,Myotonia Dystrophica,Myotonic Dystrophy 1,Myotonic Dystrophy 2,PROMM (Proximal Myotonic Myopathy),Proximal Myotonic Myopathy,Ricker Syndrome,Steinert Myotonic Dystrophy,Steinert's Disease,Atrophica, Myotonia,Atrophicas, Myotonia,Congenital Myotonic Dystrophies,Disease, Steinert,Disease, Steinert's,Dystrophia Myotonica 2s,Dystrophia Myotonicas,Dystrophica, Myotonia,Dystrophicas, Myotonia,Dystrophies, Congenital Myotonic,Dystrophies, Myotonic,Dystrophy, Congenital Myotonic,Dystrophy, Myotonic,Dystrophy, Steinert Myotonic,Myopathies, Proximal Myotonic,Myopathy, Proximal Myotonic,Myotonia Atrophicas,Myotonia Dystrophicas,Myotonic Dystrophies,Myotonic Dystrophies, Congenital,Myotonic Dystrophy, Steinert,Myotonic Myopathies, Proximal,Myotonica, Dystrophia,Myotonicas, Dystrophia,PROMMs (Proximal Myotonic Myopathy),Proximal Myotonic Myopathies,Steinerts Disease,Syndrome, Ricker
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067879 CELF1 Protein A member of the CELF PROTEINS family which binds GU rich elements (GREs) and CUG-triplet repeats in the 3'UTR of mammalian mRNA transcripts that undergo rapid turnover. It also binds AU-rich elements (AREs or EDEN-like) in the 3'UTR of JUN and FOS mRNAs. Mutations in the human CELF1 gene are associated with MYOTONIC DYSTROPHY type 1. BRUNOL2 Protein,Bruno-Like 2 Protein,CUG Triplet Repeat, RNA-Binding Protein 1,CUGBP, Elav-Like Family Member 1 Protein,CUGBP1 Protein,2 Protein, Bruno-Like,Bruno Like 2 Protein,CUG Triplet Repeat, RNA Binding Protein 1,CUGBP, Elav Like Family Member 1 Protein,Protein, BRUNOL2,Protein, Bruno-Like 2,Protein, CELF1,Protein, CUGBP1
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein

Related Publications

L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
February 1999, American journal of human genetics,
L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
May 2004, Neuroscience research,
L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
December 2015, Cell reports,
L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
January 2022, Frontiers in genetics,
L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
August 2009, Proceedings of the National Academy of Sciences of the United States of America,
L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
May 1998, Science (New York, N.Y.),
L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
January 1999, Human molecular genetics,
L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
September 2000, Science (New York, N.Y.),
L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
November 1993, Genomics,
L T Timchenko, and J W Miller, and N A Timchenko, and D R DeVore, and K V Datar, and L Lin, and R Roberts, and C T Caskey, and M S Swanson
March 2004, The Journal of biological chemistry,
Copied contents to your clipboard!