Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci. 1996

P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
Institute of Oral Microbiology and General Immunology, University of Zürich, Switzerland.

The protective effects of milk and milk products against dental caries have been demonstrated in many animal studies. We have shown that this effect was mediated by micellar casein or caseinopeptide derivatives. A reduction in the Streptococcus sobrinus population in the oral microbiota of animals fed diets supplemented with these milk components was consistently observed. A possible explanation for these findings is that milk components are incorporated into the salivary pellicle, thereby reducing the adherence of S. sobrinus. This hypothesis was tested in vitro by the incubation of bovine enamel discs with unstimulated saliva. The resulting pellicle was washed and incubated with caseinoglycomacropeptide (CGMP) and/or caseinophosphopeptide (CPP) labeled with 17- and 12-nm gold particles. All samples were prepared for electron microscopy by high-pressure freezing followed by freeze-substitution. It was demonstrated by high-resolution scanning electron microscopy with back-scattered electron imaging, as well as by transmission electron microscopy, that both peptides were incorporated into the pellicle in exchange for albumin, confirming previous findings. This protein was identified with a mouse anti-human serum albumin followed by goat anti-mouse IgG labeled with 25-nm gold particles. Incorporation of CGMP and/or CPP into salivary pellicles reduced the adherence of both S. sobrinus and S. mutans significantly. It is suggested that the calcium and phosphate-rich micellar casein or caseinopeptides are incorporated into the pellicle. The resulting ecological shifts, together with the increased remineralization potential of this biofilm, may explain its modified cariogenic potential.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008867 Microtomy The technique of using a microtome to cut thin or ultrathin sections of tissues embedded in a supporting substance. The microtome is an instrument that hold a steel, glass or diamond knife in clamps at an angle to the blocks of prepared tissues, which it cuts in sections of equal thickness. Thin Sectioning,Ultramicrotomy,Sectioning, Thin,Sectionings, Thin,Thin Sectionings
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010748 Phosphopeptides PEPTIDES that incorporate a phosphate group via PHOSPHORYLATION. Phosphopeptide
D002364 Caseins A mixture of related phosphoproteins occurring in milk and cheese. The group is characterized as one of the most nutritive milk proteins, containing all of the common amino acids and rich in the essential ones. alpha-Casein,gamma-Casein,AD beta-Casein,Acetylated, Dephosphorylated beta-Casein,Casein,Casein A,K-Casein,Sodium Caseinate,alpha(S1)-Casein,alpha(S1)-Casein A,alpha(S1)-Casein B,alpha(S1)-Casein C,alpha(S2)-Casein,alpha-Caseins,beta-Casein,beta-Caseins,epsilon-Casein,gamma-Caseins,kappa-Casein,kappa-Caseins,AD beta Casein,Caseinate, Sodium,K Casein,alpha Casein,alpha Caseins,beta Casein,beta Caseins,beta-Casein Acetylated, Dephosphorylated,beta-Casein, AD,epsilon Casein,gamma Casein,gamma Caseins,kappa Casein,kappa Caseins
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations

Related Publications

P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
July 1993, Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology,
P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
September 2004, Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition,
P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
January 2003, Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition,
P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
June 1990, Infection and immunity,
P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
January 2010, Quintessence international (Berlin, Germany : 1985),
P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
January 1992, Pediatric dentistry,
P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
December 2011, Asian Pacific journal of tropical biomedicine,
P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
December 1998, Community dentistry and oral epidemiology,
P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
January 1990, Caries research,
P Schüpbach, and J R Neeser, and M Golliard, and M Rouvet, and B Guggenheim
January 1995, Caries research,
Copied contents to your clipboard!