Expression and function of integrins on hematopoietic progenitor cells. 1997

L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
INSERM U 362, Institut Gustave-Roussy, Villejuif, France.

The growth and differentiation of hematopoietic stem cells are highly dependent on regulatory molecules produced by stromal cells of the marrow environment. Evidence has accumulated over the past years which shows that adhesive receptors on hematopoietic cells and their ligands on stromal cells and extracellular matrix play a crucial role in these interactions. Integrins of the beta 1 family, mostly VLA-4 and VLA-5, are the best characterized and have been identified on committed progenitor cells of the hematopoietic hierarchy as well as on more primitive stem cells defined by their long-term repopulating capacity assayed in vitro as well as in vivo. Functional assays demonstrate that most progenitor cells efficiently bind to ECM components through beta 1 integrins and lineage- and maturation stage-specific differences have been described. Evidence exists on the direct control of late erythroid differentiation by VLA-4, but whether or not the triggering of beta 1 integrins is critically required for hematopoietic stem cell functioning at more immature steps is unclear. Many other integrin and non-integrin receptors involved in adhesive interactions are expressed on hematopoietic progenitor cells and tightly regulated during differentiation but their function is still controversial. Our main purpose in this review is to describe recent advances in the knowledge of integrin expression on hematopoietic progenitor cells in both mouse and man. The emerging importance of the synergy between integrins and cytokine signalling pathways in the regulation of hematopoietic differentiation will also be discussed.

UI MeSH Term Description Entries
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003238 Connective Tissue Tissue that supports and binds other tissues. It consists of CONNECTIVE TISSUE CELLS embedded in a large amount of EXTRACELLULAR MATRIX. Connective Tissues,Tissue, Connective,Tissues, Connective
D003239 Connective Tissue Cells A group of cells that includes FIBROBLASTS, cartilage cells, ADIPOCYTES, smooth muscle cells, and bone cells. Cell, Connective Tissue,Cells, Connective Tissue,Connective Tissue Cell
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
September 2003, Experimental hematology,
L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
June 2004, European annals of allergy and clinical immunology,
L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
January 2015, Stem cell investigation,
L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
January 1997, Blood,
L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
July 1996, Tissue antigens,
L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
July 1996, Nihon rinsho. Japanese journal of clinical medicine,
L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
January 2001, Leukemia & lymphoma,
L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
January 1993, Blood,
L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
February 2000, Immunity,
L Coulombel, and I Auffray, and M H Gaugler, and M Rosemblatt
October 2013, Experimental cell research,
Copied contents to your clipboard!