Acute effect of cadmium on hepatic drug-metabolizing enzymes in the rat. 1977

F W Teare, and P Jasansky, and L Renaud, and P R Read

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009575 Nitroanisole O-Demethylase Oxidative enzyme which transforms p-nitroanisole into p-nitrophenol. Nitroanisole O Demethylase,Demethylase, Nitroanisole O,O Demethylase, Nitroanisole,O-Demethylase, Nitroanisole
D009579 Nitrobenzoates Benzoic acid or benzoic acid esters substituted with one or more nitro groups. Nitrobenzoic Acids,Acids, Nitrobenzoic
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug

Related Publications

F W Teare, and P Jasansky, and L Renaud, and P R Read
June 1984, The Indian journal of medical research,
F W Teare, and P Jasansky, and L Renaud, and P R Read
July 1974, Biochemical pharmacology,
F W Teare, and P Jasansky, and L Renaud, and P R Read
December 1981, Indian journal of experimental biology,
F W Teare, and P Jasansky, and L Renaud, and P R Read
July 1984, Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer,
F W Teare, and P Jasansky, and L Renaud, and P R Read
August 1983, Toxicology letters,
F W Teare, and P Jasansky, and L Renaud, and P R Read
January 1989, Acta psychiatrica Scandinavica. Supplementum,
F W Teare, and P Jasansky, and L Renaud, and P R Read
May 1982, Research communications in chemical pathology and pharmacology,
F W Teare, and P Jasansky, and L Renaud, and P R Read
January 1983, Enzyme,
F W Teare, and P Jasansky, and L Renaud, and P R Read
February 1975, Biochemical pharmacology,
F W Teare, and P Jasansky, and L Renaud, and P R Read
November 1981, The Journal of laboratory and clinical medicine,
Copied contents to your clipboard!