Fluorescence emission of ethidium bromide intercalated in defined DNA duplexes: evaluation of hydrodynamics components. 1996

J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
Department of Chemistry, University of Waterloo, Ontario, Canada.

The arrangement and stacking of noncovalently contiguous double-helical sections are increasingly invoked in single-stranded DNA and RNA tertiary structure. These tertiary structures of nucleic acids are defined by their double stranded regions, and their orientation in the molecular frame constitutes an important component of the nucleic acid structure. A direct view of these tertiary structures can be obtained by fluorescence polarization anisotropy of bound ethidium bromide (EB). The orientation of the dye in the molecular frame of the nucleic acid yields the orientation of the helix. The complete anisotropy function for EB intercalated in genome-derived DNA duplexes was derived by Allison and Schurr (1979) and accounts for base-pair twisting and DNA bending. Single-stranded ribozymes, ribosomal and transfer RNAs, and model DNA junctions contain double-stranded regions shorter than 35 bp in length, for which bending is not significant. We developed and experimentally verified an expression of the anisotropy function for short DNA duplexes which is theoretically compatible with the existing theory, originally developed for long nucleic acids (Schurr et al., 1992). Simulations showed that for DNA duplexes shorter than 35 bp, our expression of the anisotropy function is equivalent to Schurr's and is consistent with experiments carried out on eight DNA duplexes. Modeling the eight duplexes as cylinders, we calculate a duplex diameter of 1.91 +/- 0.15 nm when EB makes a 90 degrees angle with the DNA helix axis and undergoes anisotropic wobbling and 1.97 +/- 0.15 nm when EB makes a 70.5 degrees angle and undergoes isotropic wobbling, respectively. We used this treatment to establish the conformation of five DNA oligonucleotides made of single and tethered hairpins, some designed to exhibit coaxial stacking. Analysis of the fluorescence anisotropy decays shows that the tethered hairpins take an extended rather than parallel conformation. It also shows that the DNA oligonucleotides made of two tethered hairpins exhibit freedom compatible with two independent hairpins. When the linker between hairpins is shortened, the two hairpins are not independent anymore as probed by fluorescence anisotropy, suggesting coaxial stacking of the two helices.

UI MeSH Term Description Entries
D007364 Intercalating Agents Agents that are capable of inserting themselves between the successive bases in DNA, thus kinking, uncoiling or otherwise deforming it and therefore preventing its proper functioning. They are used in the study of DNA. Intercalating Agent,Intercalating Ligand,Intercalative Compound,Intercalator,Intercalators,Intercalating Ligands,Intercalative Compounds,Agent, Intercalating,Agents, Intercalating,Compound, Intercalative,Compounds, Intercalative,Ligand, Intercalating,Ligands, Intercalating
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium
D005454 Fluorescence Polarization Measurement of the polarization of fluorescent light from solutions or microscopic specimens. It is used to provide information concerning molecular size, shape, and conformation, molecular anisotropy, electronic energy transfer, molecular interaction, including dye and coenzyme binding, and the antigen-antibody reaction. Anisotropy, Fluorescence,Fluorescence Anisotropy,Polarization, Fluorescence,Anisotropies, Fluorescence,Fluorescence Anisotropies,Fluorescence Polarizations,Polarizations, Fluorescence
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated

Related Publications

J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
September 1989, Analytical biochemistry,
J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
June 1994, Biophysical chemistry,
J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
February 1970, Proceedings of the National Academy of Sciences of the United States of America,
J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
January 1987, Annals of clinical and laboratory science,
J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
April 1973, Bollettino della Societa italiana di biologia sperimentale,
J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
June 1987, Analytical biochemistry,
J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
July 1991, The Journal of biological chemistry,
J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
March 1993, Photochemistry and photobiology,
J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
September 1993, BioTechniques,
J Duhamel, and J Kanyo, and G Dinter-Gottlieb, and P Lu
January 1996, European journal of histochemistry : EJH,
Copied contents to your clipboard!