Myosin isoform transitions in four rabbit muscles during postnatal growth. 1996

F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
Station de Recherches Cunicoles, INRA, BP 27, Castanet-Tolosan, France.

Four rabbit muscles (i.e. semimembranosus proprius, psoas major, biceps femoris and longissimus lumborum), differing in their fibre type composition in the adult, were investigated during postnatal development. Muscle samples were taken at 1, 7, 14, 21, 28, 35, 49 and 77 days of age. Complementary techniques were used to characterize myosin heavy chain (MHC) isoform transitions, i.e. SDS-PAGE, immunocytochemistry and conventional histochemistry. Good accordance was found between electrophoretic and immunocytochemical techniques. Our results show that rabbit muscles were phenotypically immature at birth. At 1 day of age, perinatal isoform represented 70-90% of the total isoform content of the muscles. Two generations of myofibres could be observed on the basis of their morphology and reaction to specific antibodies. In all muscles, primary fibres expressed slow MHC. In contrast, secondary generation of fibres never expressed slow MHC in future fast muscles, while half of them expressed slow MHC in the future slow-twitch muscle, the semimembranosus proprius. During the postnatal period, all muscles displayed a transition from embryonic to perinatal MHC isoforms, followed by a transition from perinatal to adult MHC isoforms. These transitions occured mainly during the first postnatal month. The embryonic isoform was no longer expressed after 14 days, except in longissimus where it disappeared after 28 days. On the contrary, large differences were found in the timing of disappearance of the perinatal isoform between the four muscles. The perinatal isoform disappeared between 28 and 35 days in semimembranosus proprius and 35 and 49 days in psoas and biceps femoris. Interestingly, the perinatal isoform was still present in 6% of the fibres in longissimus at 77 days, the commercial slaughter age, denoting a great delay in the maturation. Fate of each generation of fibres differed between muscles.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
August 2006, Journal of anatomy,
F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
October 1989, Developmental biology,
F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
October 1990, European journal of biochemistry,
F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
January 1992, Anatomy and embryology,
F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
November 2005, Poultry science,
F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
January 1992, Journal of craniofacial genetics and developmental biology,
F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
March 1998, Developmental dynamics : an official publication of the American Association of Anatomists,
F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
January 2000, Cells, tissues, organs,
F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
October 2006, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology,
F Gondret, and L Lefaucheur, and A D'Albis, and M Bonneau
June 2006, Journal of anatomy,
Copied contents to your clipboard!