Overproduction and affinity purification of Saccharomyces cerevisiae replication factor C. 1997

K J Gerik, and S L Gary, and P M Burgers
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Yeast replication factor C (RF-C) is a heteropentamer encoded by the RFC1-5 genes. RF-C activity in yeast extracts was overproduced about 80-fold after induction of a strain containing all five genes on a single plasmid, with expression of each gene placed under control of the galactose-inducible GAL1-10 promoter. This strongly indicates that overexpression of the five known RFC genes is sufficient for overproduction of RF-C. Overexpression of all five genes was also necessary to achieve overproduction of RF-C as omission of any single gene from the plasmid gave uninduced, i.e. normal cellular levels of RF-C. The interaction between RF-C and proliferating cell nuclear antigen (PCNA) was studied with PCNA-agarose beads. Binding of RF-C to PCNA-agarose beads is negligible in buffers containing 0.3 M NaCl. However, addition of Mg-ATP to the binding buffer caused strong binding of RF-C to the beads even at 0.8 M NaCl. Binding of ATP, but not its hydrolysis, was required for the strong binding mode as nonhydrolyzable analogs were also effective. The existence of two distinct binding modes between PCNA and RF-C was used as the key step in a greatly improved procedure for the purification of RF-C. RF-C from the overproduction strain purified by this procedure was essentially homogeneous and had a severalfold higher specific activity than RF-C preparations that had previously been purified through multicolumn procedures.

UI MeSH Term Description Entries
D011887 Raffinose A trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. Gossypose,Melitose,Melitriose
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

K J Gerik, and S L Gary, and P M Burgers
November 1991, The Journal of biological chemistry,
K J Gerik, and S L Gary, and P M Burgers
December 1992, The Journal of biological chemistry,
K J Gerik, and S L Gary, and P M Burgers
September 1995, Molecular and cellular biology,
K J Gerik, and S L Gary, and P M Burgers
December 1995, Nucleic acids research,
K J Gerik, and S L Gary, and P M Burgers
January 2005, Methods in enzymology,
K J Gerik, and S L Gary, and P M Burgers
May 1994, Nucleic acids research,
K J Gerik, and S L Gary, and P M Burgers
January 1989, The Journal of biological chemistry,
K J Gerik, and S L Gary, and P M Burgers
January 2006, Methods in enzymology,
K J Gerik, and S L Gary, and P M Burgers
January 1995, European journal of biochemistry,
K J Gerik, and S L Gary, and P M Burgers
January 1992, Molecular and cellular biology,
Copied contents to your clipboard!