Sequential action of factors involved in natural competence for transformation of Neisseria gonorrhoeae. 1996

D Facius, and M Fussenegger, and T F Meyer
Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Tübingen, Germany.

We previously identified and genetically characterized several factors essential for the natural competence of transformation in Neisseria gonorrhoeae. Here we analyse the sequential action of these factors and dissect the overall transformation process into three distinct steps, (i) the sequence-specific uptake of transforming DNA into a DNase-resistant state, (ii) the transfer of DNA to the cytosol and (iii) the processing and recombination of the incoming with the resident DNA. While two pilus-associated factors, PilE and PilC, were previously implicated in the early DNA uptake event, we show here that three competence factors unrelated to pilus biogenesis, ComA, ComL and Tpc, are not essential for DNA uptake and rather act in a subsequent step. The respective mutants, however, lack the characteristic nucleolytic processing observed with the incoming DNA in both wild-type and non-transformable RecA-deficient N. gonorrhoeae, indicating that they are blocked in the processing and/or the delivery of DNA to the cytoplasm. A hypothetical model proposing a sequential action of the known gonococcal competence factors is presented.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009344 Neisseria gonorrhoeae A species of gram-negative, aerobic bacteria primarily found in purulent venereal discharges. It is the causative agent of GONORRHEA. Diplococcus gonorrhoeae,Gonococcus,Gonococcus neisseri,Merismopedia gonorrhoeae,Micrococcus der gonorrhoe,Micrococcus gonococcus,Micrococcus gonorrhoeae
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

D Facius, and M Fussenegger, and T F Meyer
August 1995, Proceedings of the National Academy of Sciences of the United States of America,
D Facius, and M Fussenegger, and T F Meyer
February 1977, Journal of bacteriology,
D Facius, and M Fussenegger, and T F Meyer
November 2003, Infection and immunity,
D Facius, and M Fussenegger, and T F Meyer
January 2019, Methods in molecular biology (Clifton, N.J.),
D Facius, and M Fussenegger, and T F Meyer
January 1990, Journal of bacteriology,
D Facius, and M Fussenegger, and T F Meyer
July 2017, Microbiology (Reading, England),
Copied contents to your clipboard!