PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. 1998

M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA.

Neisseria gonorrhoeae, the Gram-negative aetiological agent of gonorrhoeae, is one of many mucosal pathogens of man that expresses competence for natural transformation. Expression of this phenotype by gonococci appears to rely on the expression of type IV pili (Tfp), but the mechanistic basis for this relationship remains unknown. During studies of gonococcal pilus biogenesis, a homologue of the PilT family of proteins, required for Tfp-dependent twitching motility in Pseudomonas aeruginosa and social gliding motility in Myxococcus xanthus, was discovered. Like the findings in these other species, we show here that gonococcal PilT mutants constructed in vitro no longer display twitching motility. In addition, we demonstrate that they have concurrently lost the ability to undergo natural transformation, despite the expression of structurally and morphologically normal Tpf. These results were confirmed by the findings that two classes of spontaneous mutants that failed to express twitching motility and transformability carried mutations in PilT. Piliated PilT mutants and a panel of pilus assembly mutants were found to be deficient in sequence-specific DNA uptake into the cell, the earliest demonstrable step in neisserial competence. The PilT-deficient strains represent the first genetically defined mutants that are defective in DNA uptake but retain Tfp expression.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009344 Neisseria gonorrhoeae A species of gram-negative, aerobic bacteria primarily found in purulent venereal discharges. It is the causative agent of GONORRHEA. Diplococcus gonorrhoeae,Gonococcus,Gonococcus neisseri,Merismopedia gonorrhoeae,Micrococcus der gonorrhoe,Micrococcus gonococcus,Micrococcus gonorrhoeae
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
February 1989, Journal of bacteriology,
M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
December 1998, Proceedings of the National Academy of Sciences of the United States of America,
M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
April 1996, FEMS microbiology letters,
M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
January 1990, Journal of bacteriology,
M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
October 2014, Biophysical journal,
M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
January 1998, APMIS. Supplementum,
M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
August 1995, Proceedings of the National Academy of Sciences of the United States of America,
M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
November 2002, Molecular microbiology,
M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
May 1974, Infection and immunity,
M Wolfgang, and P Lauer, and H S Park, and L Brossay, and J Hébert, and M Koomey
March 1996, Molecular microbiology,
Copied contents to your clipboard!