Ferric iron reduction by Cryptococcus neoformans. 1997

K J Nyhus, and A T Wilborn, and E S Jacobson
Department of Internal Medicine, Virginia Commonwealth University, Richmond 23298-0049, USA.

The pathogenic yeast Cryptococcus neoformans must reduce Fe(III) to Fe(II) prior to uptake. We investigated mechanisms of reduction using the chromogenic ferrous chelator bathophenanthroline disulfonate. Iron-depleted cells reduced 57 nmol of Fe(III) per 10(6) cells per h, while iron-replete cells reduced only 8 nmol of Fe(III). Exponential-phase cells reduced the most and stationary-phase cells reduced the least Fe(III), independent of iron status. Supernatants from iron-depleted cells reduced up to 2 nmol of Fe(III) per 10(6) cells per h, while supernatants from iron-replete cells reduced 0.5 nmol of Fe(III), implying regulation of the secreted reductant(s). One such reductant is 3-hydroxyanthranilic acid (3HAA), which was found at concentrations up to 29 microM in iron-depleted cultures but <2 microM in cultures supplemented with iron. Moreover, when washed and resuspended in low iron medium, iron-depleted cells secreted 20.4 microM 3HAA, while iron-replete cells secreted only 4.5 microM 3HAA. Each mole of 3HAA reduced 3 mol of Fe(III), and increasing 3HAA concentrations correlated with increasing reducing activity of supernatants; however, 3HAA accounted for only half of the supernatant's reducing activity, indicating the presence of additional reductants. Finally, we found that melanized stationary-phase cells reduced 2 nmol of Fe(III) per 10(6) cells per h--16 times the rate of nonmelanized cells--suggesting that this redox polymer participates in reduction of Fe(III).

UI MeSH Term Description Entries
D008543 Melanins Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration. Allomelanins,Melanin,Phaeomelanins
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003455 Cryptococcus neoformans A species of the fungus CRYPTOCOCCUS. Its teleomorph is Filobasidiella neoformans. Blastomyces neoformans,Debaryomyces neoformans,Filobasidiella neoformans,Lipomyces neoformans,Saccharomyces neoformans,Torula neoformans,Torulopsis neoformans,Cryptococcus neoformans var. grubii
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D005296 Ferrous Compounds Inorganic or organic compounds that contain divalent iron. Compounds, Ferrous
D015095 3-Hydroxyanthranilic Acid An oxidation product of tryptophan metabolism. It may be a free radical scavenger and a carcinogen. 3 Hydroxyanthranilic Acid,Acid, 3-Hydroxyanthranilic
D038181 FMN Reductase An enzyme that utilizes NADH or NADPH to reduce FLAVINS. It is involved in a number of biological processes that require reduced flavin for their functions such as bacterial bioluminescence. Formerly listed as EC 1.6.8.1 and EC 1.5.1.29. Flavin Mononucleotide Reductase,NAD(P)H-Flavin Oxidoreductase,FMN Oxidoreductase,NAD(P)H Dehydrogenase (FMN),NAD(P)H-FMN Oxidoreductase,NADH-FMN Oxidoreductase,NADH-Flavin Oxidoreductase,NADPH-Flavin Reductase,Mononucleotide Reductase, Flavin,NADH FMN Oxidoreductase,NADPH Flavin Reductase,Oxidoreductase, FMN,Oxidoreductase, NADH-FMN,Oxidoreductase, NADH-Flavin,Reductase, FMN,Reductase, Flavin Mononucleotide,Reductase, NADPH-Flavin

Related Publications

K J Nyhus, and A T Wilborn, and E S Jacobson
January 1995, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology,
K J Nyhus, and A T Wilborn, and E S Jacobson
January 1992, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology,
K J Nyhus, and A T Wilborn, and E S Jacobson
November 2002, Journal of neuroimmunology,
K J Nyhus, and A T Wilborn, and E S Jacobson
February 2014, Infection and immunity,
K J Nyhus, and A T Wilborn, and E S Jacobson
December 1987, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology,
K J Nyhus, and A T Wilborn, and E S Jacobson
September 1998, Infection and immunity,
K J Nyhus, and A T Wilborn, and E S Jacobson
October 1976, Applied and environmental microbiology,
K J Nyhus, and A T Wilborn, and E S Jacobson
January 1991, Applied and environmental microbiology,
K J Nyhus, and A T Wilborn, and E S Jacobson
January 1979, Mikrobiologiia,
K J Nyhus, and A T Wilborn, and E S Jacobson
February 2008, PLoS pathogens,
Copied contents to your clipboard!