Ferrous iron uptake in Cryptococcus neoformans. 1998

E S Jacobson, and A P Goodner, and K J Nyhus
Research Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249, and Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0049, USA. jacobson.eric_s@richmond.va.gov

Previous studies have implicated ferric reduction in the iron uptake pathway of the opportunistic pathogen Cryptococcus neoformans. Here we studied iron uptake directly, using 55Fe in the presence of reductants. Uptake was linear with respect to time and number of yeast cells. The plot of uptake versus concentration exhibited a steep rise up to about 1 microM, a plateau between 1 and 25 microM, and a second steep rise above 25 microM, consistent with high- and low-affinity uptake systems. A Km for high-affinity uptake was estimated to be 0.6 microM Fe(II); 1 microM was used for standardized uptake assays. At this concentration, the uptake rate was 110 +/- 3 pmol/10(6) cells/h. Iron repletion (15 microM) and copper starvation drastically decreased high-affinity iron uptake. Incubation at 0 degreesC or in the presence of 2 mM KCN abolished high-affinity iron uptake, suggesting that uptake requires metabolic energy. When exogenous reducing agents were not supplied and the culture was washed free of secreted reductants, uptake was reduced by 46%; the remaining uptake activity presumably was dependent upon the cell membrane ferric reductase. Further decreases in free Fe(II) levels achieved by trapping with bathophenanthroline disulfonate or reoxidizing with potassium nitrosodisulfonate reduced iron uptake very drastically, suggesting that it is the Fe(II) species which is transported by the high-affinity transporter. The uptake of Fe was stimulated two- to threefold by deferoxamine, but this increment could be abolished by copper starvation or inhibition of the ferric reductase by Pt, indicating that Fe solubilized by this molecule also entered the reductive iron uptake pathway.

UI MeSH Term Description Entries
D007504 Iron Radioisotopes Unstable isotopes of iron that decay or disintegrate emitting radiation. Fe atoms with atomic weights 52, 53, 55, and 59-61 are radioactive iron isotopes. Radioisotopes, Iron
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D003455 Cryptococcus neoformans A species of the fungus CRYPTOCOCCUS. Its teleomorph is Filobasidiella neoformans. Blastomyces neoformans,Debaryomyces neoformans,Filobasidiella neoformans,Lipomyces neoformans,Saccharomyces neoformans,Torula neoformans,Torulopsis neoformans,Cryptococcus neoformans var. grubii
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D005296 Ferrous Compounds Inorganic or organic compounds that contain divalent iron. Compounds, Ferrous
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

E S Jacobson, and A P Goodner, and K J Nyhus
February 2008, PLoS pathogens,
E S Jacobson, and A P Goodner, and K J Nyhus
January 2005, Mycopathologia,
E S Jacobson, and A P Goodner, and K J Nyhus
January 1992, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology,
E S Jacobson, and A P Goodner, and K J Nyhus
October 2009, Eukaryotic cell,
E S Jacobson, and A P Goodner, and K J Nyhus
January 1995, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology,
E S Jacobson, and A P Goodner, and K J Nyhus
December 1987, Journal of medical and veterinary mycology : bi-monthly publication of the International Society for Human and Animal Mycology,
E S Jacobson, and A P Goodner, and K J Nyhus
February 1997, Infection and immunity,
E S Jacobson, and A P Goodner, and K J Nyhus
November 2012, Fungal genetics and biology : FG & B,
E S Jacobson, and A P Goodner, and K J Nyhus
January 1991, Journal of bacteriology,
E S Jacobson, and A P Goodner, and K J Nyhus
November 2002, Journal of neuroimmunology,
Copied contents to your clipboard!