Purification, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III. 1997

L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Saccharomyces cerevisiae redoxyendonuclease (Scr), a homolog of Escherichia coli endonuclease III, was purified from yeast deficient in the major apurinic/apyrimidinic endonuclease, Apnl. Studies of this highly purified preparation of Scr have revealed a number of similarities between this protein and endonuclease III as well as provided further evidence for a common mechanism of action for this class of DNA glycosylase/AP lyases. We have employed a sensitive and specific assay for Scr which utilizes oligonucleotide substrates containing a single 5,6-dihydrouracil base lesion or an abasic site. These substrates were utilized to investigate the mode of action of Scr on damaged DNA and to compare the kinetic properties of the yeast enzyme with its E. coli counterpart. Furthermore, we have identified two distinct genes, SCR1 and SCR2, which encode highly homologous proteins with similar activities in yeast. Analysis of the deduced amino acid sequences of SCR1 and SCR2 suggests that S. cerevisiae possesses two similar enzymes encoded on separate chromosomes: one which bears an Fe-S binding motif, while the other does not. The potential biological roles of these two forms of Scr are discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
January 1997, Proceedings of the National Academy of Sciences of the United States of America,
L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
April 1988, Biochemistry,
L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
April 1998, Biochemistry,
L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
May 1989, Biochemistry,
L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
July 2019, Protein expression and purification,
L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
March 1993, European journal of biochemistry,
L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
October 1998, Journal of molecular biology,
L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
February 1985, Journal of bacteriology,
L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
July 1997, Proceedings of the National Academy of Sciences of the United States of America,
L Augeri, and Y M Lee, and A B Barton, and P W Doetsch
December 1993, The Journal of biological chemistry,
Copied contents to your clipboard!