Saccharomyces cerevisiae possesses two functional homologues of Escherichia coli endonuclease III. 1998

H J You, and R L Swanson, and P W Doetsch
Department of Biochemistry, Graduate Program in Nutrition and Health Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

We previously identified two distinct genes of Saccharomyces cerevisiae redoxyendonuclease (SCR1 and SCR2) which possess a high degree of sequence similarity to Escherichia coli endonuclease III [Augeri, L., Lee, Y. M., Barton, A. B., and Doetsch, P. W. (1997) Biochemistry 36, 721-729]. The proteins encoded by SCR1 and SCR2 were overexpressed in E. coli and purified to apparent homogeneity. Both proteins recognized and cleaved DNA substrates containing dihydrouracil, 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine (FaPy-7-MeGua), and abasic sites but not DNA substrates containing uracil or 8-oxoguanine. Purified Scr2, but not Scr1, possesses spectral properties which indicate the presence of an iron-sulfur center. Kinetic parameters for Scr1 and Scr2 were determined by using an oligonucleotide containing a single dihydrouracil. Analysis of the deduced amino acid sequences of Scr1 and Scr2 suggests that Scr2 bears an iron-sulfur motif, while Scr1 does not have this motif. However, Scr1 has a long, positively charged N-terminus that could be a mitochondrial transit sequence. Targeted gene disruption of SCR1 and SCR2 produced a double mutant that had no detectable enzymatic activity against the dihydrouracil-containing substrate. Northern blot analysis showed that SCR1 was induced by menadione, but SCR2 was not. These results indicate that although Scr1 and Scr2 are both functional homologues of E. coli endonuclease III, they differ from each other with respect to their amino acid sequences and inducibility by DNA damaging agents, suggesting that their precise biological roles may be different.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D007700 Kinetics The rate dynamics in chemical or physical systems.
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

H J You, and R L Swanson, and P W Doetsch
December 1991, The Journal of biological chemistry,
H J You, and R L Swanson, and P W Doetsch
April 2004, The Journal of biological chemistry,
H J You, and R L Swanson, and P W Doetsch
January 1985, Proceedings of the National Academy of Sciences of the United States of America,
H J You, and R L Swanson, and P W Doetsch
August 1983, Biochemistry,
H J You, and R L Swanson, and P W Doetsch
December 1987, Biochemistry,
Copied contents to your clipboard!