Intratracheal instillation versus intratracheal-inhalation of tracer particles for measuring lung clearance function. 1997

G Oberdörster, and C Cox, and R Gelein
University of Rochester, Department of Environmental Medicine, School of Medicine and Dentistry, New York, USA.

Effective elimination of particles deposited in the respiratory tract is an important defense function to protect the organism from potentially adverse effects of inhaled particles. Delivery of radioactively labeled tracer particles and subsequent measurement in vivo of their retention in different regions of the respiratory tract provides an adequate method for characterizing this defensive function. However, the delivery of such tracer particles by inhalation may result in some external contamination of the animals and requires specific protective measures while working with radioactive aerosols. In this study, 85Sr-labeled tracer particles (3 microns) were administered to the lower respiratory tract of rats by intratracheal inhalation to avoid external contamination, and also by intratracheal instillation in order to compare the 2 technique with respect to their suitability for measuring normal and impaired particle clearance rates. It was postulated that particle clearance function in the alveolar region can be determined equally well with intratracheally instilled particles despite their uneven distribution in the lung. For both techniques, rats were anesthesized with halothane and the particles were administered via oral intubation. Retention in the lower respiratory tract of about 30 micrograms (inhalation) and 6 micrograms (instillation) of the administered particles was followed over a period of 180 days by external counting of lung 85Sr-activity in a collimated detection system. To impair alveolar particle clearance rates, groups of rats were subjected to 12 weeks of inhalation exposure prior to delivery of the tracer particles as follows: (1) sham-exposed control; (2) pigment-grade TiO2 particles to induce lung overload: (3) ultrafine TiO2 particles: (4) crystalline SiO2 particles (cristobalite). The following results were obtained: The long-term retention half-times (T1/2) of the tracer particles reflecting alveolar clearance consistently showed the same ranking of the treatment groups whether measured after intratracheal inhalation or instillation. Control values were 66 and 72 days, respectively, and significantly prolonged long-term clearance was measured by both methods for pigment-grade TiO2 (117 and 99 days), ultrafine TiO2 (541 and 600 days) and SiO2 (1901 and 1368 days). Comparison of these values between the two modes of administration of tracer particles showed no significant differences. In contrast, the short-term T1/2 (mucociliary clearance) of the intratracheally instilled tracer particles in the different treatment groups were variable and did not accurately reflect particle clearance from the conducting airways. However, short-term T1/2 after intratracheal inhalation of tracer particles were consistent with fast conducting airway clearance, and mucociliary clearance appears to be stimulated when alveolar clearance is significantly impaired due to particle overload or to effects of cytotoxic particles. The results suggest that intratracheal instillation of a low dose (< or = 10 micrograms) of tracer particles in the rat provides an adequate method for reliably determining effects of inhaled toxicants on alveolar particle clearance function. Further, intratracheal inhalation of tracer particles is useful for measuring both short-term (mucociliary) and long-term (alveolar) particle clearance rates in the lower respiratory tract of the rat.

UI MeSH Term Description Entries
D007322 Instillation, Drug The administration of therapeutic agents drop by drop, as eye drops, ear drops, or nose drops. It is also administered into a body space or cavity through a catheter. It differs from THERAPEUTIC IRRIGATION in that the irrigate is removed within minutes, but the instillate is left in place. Drug Instillation,Drug Instillations,Instillations, Drug
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D000280 Administration, Inhalation The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract. Drug Administration, Inhalation,Drug Administration, Respiratory,Drug Aerosol Therapy,Inhalation Drug Administration,Inhalation of Drugs,Respiratory Drug Administration,Aerosol Drug Therapy,Aerosol Therapy, Drug,Drug Therapy, Aerosol,Inhalation Administration,Administration, Inhalation Drug,Administration, Respiratory Drug,Therapy, Aerosol Drug,Therapy, Drug Aerosol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012822 Silicon Dioxide Transparent, tasteless crystals found in nature as agate, amethyst, chalcedony, cristobalite, flint, sand, QUARTZ, and tridymite. The compound is insoluble in water or acids except hydrofluoric acid. Silica,Aerosil,Aerosil 380,Cristobalite,Quso G-32,Quso G32,Tridymite,380, Aerosil,Dioxide, Silicon,G32, Quso,Quso G 32
D013326 Strontium Radioisotopes Unstable isotopes of strontium that decay or disintegrate spontaneously emitting radiation. Sr 80-83, 85, and 89-95 are radioactive strontium isotopes. Radioisotopes, Strontium
D014025 Titanium A dark-gray, metallic element of widespread distribution but occurring in small amounts with atomic number, 22, atomic weight, 47.867 and symbol, Ti; specific gravity, 4.5; used for fixation of fractures.

Related Publications

G Oberdörster, and C Cox, and R Gelein
September 1997, Environmental health perspectives,
G Oberdörster, and C Cox, and R Gelein
December 1997, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie,
G Oberdörster, and C Cox, and R Gelein
February 1980, Zentralblatt fur Bakteriologie. 1. Abt. Originale B, Hygiene, Krankenhaushygiene, Betriebshygiene, praventive Medizin,
G Oberdörster, and C Cox, and R Gelein
July 1969, Archives of environmental health,
G Oberdörster, and C Cox, and R Gelein
February 1976, Environmental research,
G Oberdörster, and C Cox, and R Gelein
December 1997, Fundamental and applied toxicology : official journal of the Society of Toxicology,
G Oberdörster, and C Cox, and R Gelein
September 2009, Toxicology letters,
G Oberdörster, and C Cox, and R Gelein
June 2011, Inhalation toxicology,
G Oberdörster, and C Cox, and R Gelein
December 2010, Toxicological sciences : an official journal of the Society of Toxicology,
Copied contents to your clipboard!