Metabotropic glutamate receptor activation modulates kainate and serotonin calcium response in astrocytes. 1997

L L Haak, and H C Heller, and A N van den Pol
Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.

Although metabotropic glutamate receptor (mGluR) modulation has been studied extensively in neurons, it has not been investigated in astrocytes. We studied modulation of glutamate-evoked calcium rises in primary astrocyte cultures using fura-2 ratiometric digital calcium imaging. Calcium plays a key role as a second messenger system in astrocytes, both in regulation of many subcellular processes and in long distance intercellular signaling. Suprachiasmatic nucleus (SCN) and cortical astrocytes showed striking differences in sensitivity to glutamate and to mGluR agonists, even after several weeks in culture. Kainate-evoked intracellular calcium rises were inhibited by concurrent application of the type I and II mGluR agonists quisqualate (10 micro;M), trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylate (100-500 micro;M), and (2S-1'S-2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I) (10 micro;M). Inhibition mediated by L-CCG-I had long-lasting effects (>45 min) in approximately 30% of the SCN astrocytes tested. The inhibition could be mimicked by the L-type calcium channel blocker nimodipine (1 micro;M) as well as by protein kinase C (PKC) activators phorbol 12,13-dibutyrate (10 micro;M) and phorbol 12-myristate 13-acetate (500 nM), and blocked by the PKC inactivator (+/-)-1-(5-isoquinolinesulfonyl)-2-methylpiperazine (200 micro;M), suggesting a mechanism involving PKC modulation of L-type calcium channels. In contrast, mGluRs modulated serotonin (5HT)-evoked calcium rises through a different mechanism. The type III mGluR agonist L-2-amino-4-phosphonobutyrate consistently inhibited 5HT-evoked calcium rises, whereas in a smaller number of cells quisqualate and L-CCG-I showed both inhibitory and additive effects. Unlike the mGluR-kainate interaction, which required a pretreatment with an mGluR agonist and was insensitive to pertussis toxin (PTx), the mGluR modulation of 5HT actions was rapid and was blocked by PTx. These data suggest that glutamate, acting at several metabotropic receptors expressed by astrocytes, could modulate glial activity evoked by neurotransmitters and thereby influence the ongoing modulation of neurons by astrocytes.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D009553 Nimodipine A calcium channel blockader with preferential cerebrovascular activity. It has marked cerebrovascular dilating effects and lowers blood pressure. Admon,Bay e 9736,Brainal,Calnit,Kenesil,Modus,Nimodipin Hexal,Nimodipin-ISIS,Nimodipino Bayvit,Nimotop,Nymalize,Remontal,Bayvit, Nimodipino,Hexal, Nimodipin,Nimodipin ISIS,e 9736, Bay
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003515 Cycloleucine An amino acid formed by cyclization of leucine. It has cytostatic, immunosuppressive and antineoplastic activities. 1-Aminocyclopentanecarboxylic Acid,Aminocyclopentanecarboxylic Acid,NSC 1026,1 Aminocyclopentanecarboxylic Acid,Acid, 1-Aminocyclopentanecarboxylic,Acid, Aminocyclopentanecarboxylic
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000600 Amino Acids, Dicarboxylic Dicarboxylic Amino Acids,Acids, Dicarboxylic Amino

Related Publications

L L Haak, and H C Heller, and A N van den Pol
May 2007, Journal of neuroscience research,
L L Haak, and H C Heller, and A N van den Pol
December 1997, Neuroscience,
L L Haak, and H C Heller, and A N van den Pol
December 2001, The Journal of biological chemistry,
L L Haak, and H C Heller, and A N van den Pol
July 1994, Journal of neurophysiology,
L L Haak, and H C Heller, and A N van den Pol
July 1998, Journal of neurophysiology,
L L Haak, and H C Heller, and A N van den Pol
February 1999, Glia,
L L Haak, and H C Heller, and A N van den Pol
December 2018, Molecular pharmacology,
L L Haak, and H C Heller, and A N van den Pol
January 2009, Brain research,
Copied contents to your clipboard!