Characterization of a low affinity thyroid hormone receptor binding site within the rat GLUT4 gene promoter. 1997

C J Torrance, and S J Usala, and J E Pessin, and G L Dohm
Department of Biochemistry, East Carolina University School of Medicine, Greenville, North Carolina 27858, USA.

Previous studies have demonstrated that thyroid hormone (T3) stimulates insulin-responsive glucose transporter (GLUT4) transcription and protein expression in rat skeletal muscle. The aim of the present study was to define a putative thyroid hormone response element (TRE) within the rat GLUT4 promoter and thus perhaps determine whether T3 acts directly to augment skeletal muscle GLUT4 transcription. To this end, electrophoretic mobility shift analyses were performed to analyze thyroid hormone receptor (TR) binding to a previously characterized 281-bp T3-responsive region of the rat GLUT4 promoter. Indeed, within this region, a TR-binding site of the standard DR + 4 TRE variety was located between bases -457/ -426 and was shown to posses a specific affinity for in vitro translated TRs. Interestingly, however, the GLUT4 TR-binding site demonstrated a significantly lower affinity compared to a consensus DR + 4 TRE, and only bound TRs appreciatively in the form of high affinity heterodimers, in this case with the cis-retinoic acid receptor. In conclusion, these data demonstrated the presence of a specific TR-binding site within a T3-responsive region of the rat GLUT4 promoter and thus support the supposition that thyroid hormone acts directly to stimulate GLUT4 transcription in rat skeletal muscle. Moreover, characterization of a novel TR-binding site with low affinity suggests an additional mechanism by which the intrinsic activity and responsiveness of thyroid hormone regulated genes may be modulated.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011988 Receptors, Thyroid Hormone Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively. Diiodotyrosine Receptors,Receptors, Diiodotyrosine,Receptors, Thyroxine,Receptors, Triiodothyronine,T3 Receptors,T4 Receptors,Thyroid Hormone Receptors,Thyroxine Receptors,Triiodothyronine Receptors,DIT Receptors,Diiodotyrosine Receptor,MIT Receptors,Monoiodotyrosine Receptors,Receptors, DIT,Receptors, MIT,Receptors, Monoiodotyrosine,Receptors, T3,Receptors, T4,T3 Receptor,T4 Receptor,Thyroid Hormone Receptor,Thyroxine Receptor
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

C J Torrance, and S J Usala, and J E Pessin, and G L Dohm
November 1981, The Journal of biological chemistry,
C J Torrance, and S J Usala, and J E Pessin, and G L Dohm
May 1995, Biochemical and biophysical research communications,
C J Torrance, and S J Usala, and J E Pessin, and G L Dohm
August 1987, Proceedings of the National Academy of Sciences of the United States of America,
C J Torrance, and S J Usala, and J E Pessin, and G L Dohm
November 1993, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
C J Torrance, and S J Usala, and J E Pessin, and G L Dohm
January 2000, Endocrinology,
C J Torrance, and S J Usala, and J E Pessin, and G L Dohm
May 1992, Biochemical and biophysical research communications,
C J Torrance, and S J Usala, and J E Pessin, and G L Dohm
December 2001, Physiological genomics,
C J Torrance, and S J Usala, and J E Pessin, and G L Dohm
April 1993, Oncogene,
Copied contents to your clipboard!