Antiestrogenic activity of DP-TAT-59, an active metabolite of TAT-59 against human breast cancer. 1997

T Toko, and J Shibata, and M Nukatsuka, and Y Yamada
Hanno Research Center, Taiho Pharmaceutical Co. Ltd., Saitama, Japan.

OBJECTIVE The purpose of this study was to clarify the mechanism(s) of antiestrogenic action of DP-TAT-59 ((Z)-2-(4-(1-(4-hydroxyphenyl)-2-(4-isopropyl-phenyl)- 1-butenyl)phenoxy)-N,N-dimethylethylamine), the main active metabolite of TAT-59. METHODS Using 4-OH-tamoxifen (a hydroxylated metabolite of tamoxifen) as a reference compound, we examined the relationship between hormone-dependent tumor cells and DP-TAT-59 and characterized estrogen receptor (ER) complexes with DP-TAT-59 using ion-exchange chromatography. RESULTS DP-TAT-59 inhibited the in vitro proliferation of MCF-7 cells under serum-free conditions at a lower concentration than did 4-OH-tamoxifen. The conditioned medium (CM) obtained from the culture supernatant of MCF-7 cells in the presence of these antiestrogens suppressed the growth of ER-negative cell lines, but that from ER-negative human mammary carcinoma MX-1 cells did not. The CM from DP-TAT-59-treated cells showed a higher growth-inhibitory potency against human mammary carcinoma ZR-75-1 cells than did that from 4-OH-tamoxifen-treated cells. The growth-inhibitory potency of the CM was neutralized by the addition of the anti-TGF-beta antibody. The CM obtained from cells treated with DP-TAT-59 contained more TGF-beta and less TGF-alpha than that treated with 4-OH-tamoxifen. As the antiestrogenic activity of TAT-59 might be mediated through ER, the interaction of these antiestrogens with a cytoplasmic receptor of MCF-7 cells was examined. While the competitive binding of [3H]-estradiol with these antiestrogens to ER was similar, ER complexes with DP-TAT-59 showed a different elution profile by ion-exchange chromatography, indicating that DP-TAT-59 formed a different complex with ER from either 4-OH-tamoxifen or estradiol. CONCLUSIONS These findings suggest that at least a part of the growth suppressive ability of DP-TAT-59 against human mammary carcinoma might depend on the production of growth inhibitory factors and/or the suppression of production of growth factors from ER-positive cells, and that the production of growth inhibitory factors might be stimulated by ER complexes with antiestrogens rather than with estrogen.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004965 Estrogen Antagonists Compounds which inhibit or antagonize the action or biosynthesis of estrogenic compounds. Estradiol Antagonists,Antagonists, Estradiol,Antagonists, Estrogen
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

T Toko, and J Shibata, and M Nukatsuka, and Y Yamada
March 1998, Gan to kagaku ryoho. Cancer & chemotherapy,
T Toko, and J Shibata, and M Nukatsuka, and Y Yamada
December 1992, Journal of surgical oncology,
T Toko, and J Shibata, and M Nukatsuka, and Y Yamada
January 1986, Anticancer research,
T Toko, and J Shibata, and M Nukatsuka, and Y Yamada
October 1981, The Journal of clinical endocrinology and metabolism,
T Toko, and J Shibata, and M Nukatsuka, and Y Yamada
April 1993, Gan to kagaku ryoho. Cancer & chemotherapy,
T Toko, and J Shibata, and M Nukatsuka, and Y Yamada
March 1990, European journal of cancer (Oxford, England : 1990),
T Toko, and J Shibata, and M Nukatsuka, and Y Yamada
November 2015, The Journal of nutritional biochemistry,
T Toko, and J Shibata, and M Nukatsuka, and Y Yamada
June 2017, Drug development research,
T Toko, and J Shibata, and M Nukatsuka, and Y Yamada
February 2000, Journal of toxicology and environmental health. Part A,
Copied contents to your clipboard!