Two types of identified ascending interneurons with distinct GABA receptors in the crayfish terminal abdominal ganglion. 1997

H Miyata, and T Nagayama, and M Takahata
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan.

More than half of the identified ascending interneurons originating in the terminal abdominal ganglion of the crayfish received inhibitory sensory inputs from hair afferents innervating the tailfan on the side contralateral to their main branches. Biochemical aspects of this transverse lateral inhibition of ascending interneurons were examined by the use of neurophysiological and pharmacological techniques. Local application of gamma-aminobutyric acid (GABA) and its agonist muscimol into the neuropil induced membrane hyperpolarization of identified ascending interneurons with an increase in membrane conductance. Because the reversal potential of inhibitory postsynaptic potential (IPSPs) in ascending interneurons elicited by the sensory stimulation and GABA injection was similar, and the sensory-stimulated IPSPs of the interneurons were blocked by GABA and muscimol application, this study strongly suggests a GABAergic nature for transverse lateral inhibition of ascending interneurons. According to the response to the GABAA antagonists bicuculline and picrotoxin, ascending interneurons were classified into two types, picrotoxin-sensitive and picrotoxin-insensitive interneurons. Identified ascending interneurons VE-1 and RO-4 showed a pharmacological profile similar to that of the classical GABAA receptor of the vertebrates. Bath application of both bicuculline and picrotoxin reversibly reduced the amplitudes of IPSPs. The other identified ascending interneurons CA-1, RO-1, and RO-2 were not affected significantly by the bath application of GABAA and GABAB antagonists, although bath application of low-chloride saline reversed the sensory-stimulated IPSPs. IPSPs of the picrotoxin-sensitive interneurons had a rather faster time course and shorter duration in comparison with those of the picrotoxin-insensitive interneurons.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008297 Male Males
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D005260 Female Females
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Miyata, and T Nagayama, and M Takahata
July 1994, Journal of neurophysiology,
H Miyata, and T Nagayama, and M Takahata
July 2001, Cell and tissue research,
H Miyata, and T Nagayama, and M Takahata
November 1993, The Journal of comparative neurology,
H Miyata, and T Nagayama, and M Takahata
January 1999, The Journal of experimental biology,
H Miyata, and T Nagayama, and M Takahata
January 2005, Journal of experimental zoology. Part A, Comparative experimental biology,
H Miyata, and T Nagayama, and M Takahata
August 1999, The Journal of comparative neurology,
H Miyata, and T Nagayama, and M Takahata
February 2001, Cell and tissue research,
H Miyata, and T Nagayama, and M Takahata
January 1990, The Journal of experimental zoology,
H Miyata, and T Nagayama, and M Takahata
August 2015, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
H Miyata, and T Nagayama, and M Takahata
June 2004, The Journal of comparative neurology,
Copied contents to your clipboard!