Quinoline antimalarials: mechanisms of action and resistance. 1997

M Foley, and L Tilley
School of Biochemistry, La Trobe University, Victoria, Australia.

The quinoline-containing antimalarial drugs, chloroquine, quinine and mefloquine, are a vital part of our chemotherapeutic armoury against malaria. These drugs are thought to act by interfering with the digestion of haemoglobin in the blood stages of the malaria life cycle. Chloroquine is a dibasic drug which diffuses down the pH gradient to accumulate about a 1000-fold in the acidic vacuole of the parasite. The high intravacuolar concentration of chloroquine is proposed to inhibit the polymerisation of haem. As a result, the haem which is released during haemoglobin breakdown builds up to poisonous levels, thereby killing the parasite with its own toxic waste. The more lipophilic quinolinemethanol drugs, mefloquine and quinine, are not concentrated so extensively in the food vacuole and probably have alternative sites of action. The technique of photoaffinity labelling has been used to identify a series of proteins which interact specifically with mefloquine. These studies have led us to speculate that the quinolinemethanols bind to high density lipoproteins in the serum and are delivered to the erythrocytes where they interact with an erythrocyte membrane protein, known as stomatin, and are then transferred to the intracellular parasite via a pathway used for the uptake of exogenous phospholipid. The final target(s) of quinine and mefloquine action are not yet fully characterised, but may include parasite proteins with apparent molecular weights of 22 kDa and 36 kDa. As resistance to the quinoline antimalarials rises inexorably, there is an urgent need to understand the molecular basis for decreased drug sensitivity. A parasite-encoded homologue of P-glycoprotein has been implicated in the development of drug resistance, possibly by controlling the level of accumulation of the quinoline-containing drugs. As our molecular understanding of these processes increases, it should be possible to design novel antimalarial strategies which circumvent the problem of drug resistance.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010961 Plasmodium A genus of protozoa that comprise the malaria parasites of mammals. Four species infect humans (although occasional infections with primate malarias may occur). These are PLASMODIUM FALCIPARUM; PLASMODIUM MALARIAE; PLASMODIUM OVALE, and PLASMODIUM VIVAX. Species causing infection in vertebrates other than man include: PLASMODIUM BERGHEI; PLASMODIUM CHABAUDI; P. vinckei, and PLASMODIUM YOELII in rodents; P. brasilianum, PLASMODIUM CYNOMOLGI; and PLASMODIUM KNOWLESI in monkeys; and PLASMODIUM GALLINACEUM in chickens. Plasmodiums
D011803 Quinine An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. Biquinate,Legatrim,Myoquin,Quinamm,Quinbisan,Quinbisul,Quindan,Quinimax,Quinine Bisulfate,Quinine Hydrochloride,Quinine Lafran,Quinine Sulfate,Quinine Sulphate,Quinine-Odan,Quinoctal,Quinson,Quinsul,Strema,Surquina,Bisulfate, Quinine,Hydrochloride, Quinine,Sulfate, Quinine,Sulphate, Quinine
D011804 Quinolines
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002738 Chloroquine The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. Aralen,Arechine,Arequin,Chingamin,Chlorochin,Chloroquine Sulfate,Chloroquine Sulphate,Khingamin,Nivaquine,Sulfate, Chloroquine,Sulphate, Chloroquine
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Foley, and L Tilley
January 1998, Medecine tropicale : revue du Corps de sante colonial,
M Foley, and L Tilley
January 1969, Journal of medicinal chemistry,
M Foley, and L Tilley
February 2007, Nihon rinsho. Japanese journal of clinical medicine,
M Foley, and L Tilley
January 1993, Agents and actions. Supplements,
M Foley, and L Tilley
May 1970, Journal of medicinal chemistry,
M Foley, and L Tilley
May 2006, Journal of inorganic biochemistry,
M Foley, and L Tilley
January 2021, Frontiers in microbiology,
M Foley, and L Tilley
July 1997, Annals of tropical medicine and parasitology,
Copied contents to your clipboard!