Existence, properties, and functional expression of "Maxi-K"-type, Ca2+-activated K+ channels in short-term cultured hepatocytes. 1997

D C Pon, and C E Hill
Department of Physiology, Queen's University, Kingston, Ontario, Canada.

A large-conductance, Ca2+-activated K+ channel was identified and characterized in embryonic chick hepatocytes using the patch-electrode voltage-clamp technique. The channel conductance was 213 pS in excised patches bathed in symmetrical 145 mM KCI and 1 mM Ca2+. Current-voltage relationships were linear with high K+ on both sides of the membrane but showed constant field rectification as the K+ gradient was increased. The reversal potential shifted 58 mV per 10-fold change in the ratio of external to internal K+. Channel openings occurred at potentials higher than +50 mV in cell-attached patches. The open probability X voltage relationship shifted to more negative potentials in excised, inside-out patches exposed to a solution containing high Ca2+. The voltage sensitivity of the channel was not significantly affected by changes in internal Ca2+ concentration. Conversely, channel gating, reflected in the half-activation potential, shifted 118 mV per 10-fold change in internal Ca2+ at concentrations less than approximately 2 microM, although at higher Ca2+, this parameter was Ca2+ insensitive. Channel open probability in cell-attached patches increased significantly following exposure of the cells to either the Ca2+ ionophore A-23187 or L-alanine, a cell-volume modulator. Channel density increased with time spent in culture from no observations in 10-hr cells, through 13 and 80% of patches in 24-and 48-hr cultured cells, respectively. The implications of delayed functional expression for ion channel studies in acutely dissociated cells is discussed.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

D C Pon, and C E Hill
November 1988, Pflugers Archiv : European journal of physiology,
D C Pon, and C E Hill
June 1997, The Journal of membrane biology,
D C Pon, and C E Hill
March 1994, Proceedings of the National Academy of Sciences of the United States of America,
D C Pon, and C E Hill
January 1996, Biofizika,
D C Pon, and C E Hill
February 1987, The American journal of physiology,
D C Pon, and C E Hill
May 1999, The American journal of physiology,
D C Pon, and C E Hill
January 1989, Pflugers Archiv : European journal of physiology,
D C Pon, and C E Hill
December 1998, Pflugers Archiv : European journal of physiology,
D C Pon, and C E Hill
May 1997, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!