Small (SKCa) Ca2+-activated K+ channels in cultured rat hippocampal pyramidal neurones. 1998

A A Selyanko, and J A Sim, and D A Brown
Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK. a.selyanko@ucl.ac.uk

Small (SKCa) Ca2+-activated K+ channels were identified in membrane patches excised from cultured CA1-CA3 pyramidal neurones of the neonatal rat hippocampus. When recorded in low-K+ extracellular solution ([K+]o=2.5 mM), SKCa channels had a low conductance (@3 pS at 0 mV), were activated by >/=175 nM Ca2+ (Po=0.54 at 500 nM Ca2+) and there were two open-time components (2.1 and @70 ms) to their activity. These properties of single SKCa channels are similar to those of slow after-hyperpolarization channels (sAHP) previously inferred from fluctuation analysis of the sAHP current. It is concluded that the SKCa channel reported here may be the channel that generates the sAHP in hippocampal pyramidal neurones.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A A Selyanko, and J A Sim, and D A Brown
December 1995, British journal of pharmacology,
A A Selyanko, and J A Sim, and D A Brown
March 2009, Journal of neuroendocrinology,
A A Selyanko, and J A Sim, and D A Brown
August 1990, British journal of pharmacology,
A A Selyanko, and J A Sim, and D A Brown
April 1994, European journal of pharmacology,
A A Selyanko, and J A Sim, and D A Brown
September 1988, Biochimica et biophysica acta,
A A Selyanko, and J A Sim, and D A Brown
August 1998, The Journal of physiology,
A A Selyanko, and J A Sim, and D A Brown
August 1998, The Journal of physiology,
A A Selyanko, and J A Sim, and D A Brown
June 2016, Journal of neuroendocrinology,
Copied contents to your clipboard!