Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. 1997

J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
Department of Neurology and Program in Neuroscience, Harvard Medical School, Beth Israel Hospital, Boston, Massachusetts 02115, USA. jelmquis@bidmc.harvard.edu

Production of prostaglandins is a critical step in transducing immune stimuli into central nervous system (CNS) responses, but the cellular source of prostaglandins responsible for CNS signalling is unknown. Cyclooxygenase catalyzes the rate-limiting step in the synthesis of prostaglandins and exists in two isoforms. Regulation of the inducible isoform, cyclooxygenase 2, is thought to play a key role in the brain's response to acute inflammatory stimuli. In this paper, we report that intravenous lipopolysaccharide (LPS or endotoxin) induces cyclooxygenase 2-like immunoreactivity in cells closely associated with brain blood vessels and in cells in the meninges. Neuronal staining was not noticeably altered or induced in any brain region by endotoxin challenge. Furthermore, many of the cells also were stained with a perivascular microglial/macrophage-specific antibody, indicating that intravenous LPS induces cyclooxygenase in perivascular microglia along blood vessels and in meningeal macrophages at the edge of the brain. These findings suggest that perivascular microglia and meningeal macrophages throughout the brain may be the cellular source of prostaglandins following systemic immune challenge. We hypothesize that distinct components of the CNS response to immune system activation may be mediated by prostaglandins produced at specific intracranial sites such as the preoptic area (altered sleep and thermoregulation), medulla (adrenal corticosteroid response), and cerebral cortex (headache and encephalopathy).

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008576 Meningeal Arteries Arteries which supply the dura mater. Arteries, Meningeal,Artery, Meningeal,Meningeal Artery
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017628 Microglia The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling. Microglial Cell,Cell, Microglial,Microglial Cells,Microglias

Related Publications

J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
May 2010, Cellular and molecular neurobiology,
J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
July 1996, The Journal of comparative neurology,
J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
September 2001, Journal of neurotrauma,
J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
August 2005, Glia,
J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
May 2003, Biochemical and biophysical research communications,
J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
November 1996, Biochimica et biophysica acta,
J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
August 1998, Brain research,
J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
February 1997, European journal of biochemistry,
J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
November 1993, Neuroscience letters,
J K Elmquist, and C D Breder, and J E Sherin, and T E Scammell, and W F Hickey, and D Dewitt, and C B Saper
January 1991, Neuroscience,
Copied contents to your clipboard!