Mechanism of enhanced vasoconstrictor hormone action in vascular smooth muscle cells by cyclosporin A. 1997

A Lo Russo, and A C Passaquin, and U T Rüegg
Pharmacology Group, School of Pharmacy, University of Lausanne, Switzerland.

1. The use of the immunosuppressive drug cyclosporin A (CsA) is limited by two major side effects, nephrotoxicity and hypertension, which are caused by drug-induced local vasoconstriction. We have recently shown that CsA potentiates the contraction of isolated resistance arteries to vasoconstrictor hormones and increases the calcium response to these agents in vascular smooth muscle cells (VSMC). The goal of the present study was to investigate further the molecular mechanism(s) involved in these effects. 2. Stimulation of VSMC with [Arg]8 vasopressin (AVP) induced a concentration-dependent increase in total inositol phosphates (InsP) and cellular calcium response (as measured by 45Ca2+ efflux). Preincubation of VSMC with CsA increased both InsP formation and 45Ca2+ efflux. 3. The potentiating effect of CsA on AVP-elicited InsP formation and 45Ca2+ efflux was inhibited by co-incubation with the protein synthesis inhibitors actinomycin D and cycloheximide, indicating that CsA acted on gene expression. 4. Binding experiments with [3H]-AVP on VSMC showed that CsA increased the number of AVP receptors by about two fold without affecting receptor affinity. Actinomycin D completely blocked this increase. 5. These results demonstrate for the first time that incubation of VSMC with CsA increases the expression of AVP receptors, resulting in a potentiation of InsP formation and calcium response upon stimulation with AVP. This effect of CsA is likely to occur with other vasoconstrictor hormone receptors as well and could be a key mechanism in the induction of vasoconstriction, and subsequent drug-induced nephrotoxicity and hypertension.

UI MeSH Term Description Entries
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine
D016572 Cyclosporine A cyclic undecapeptide from an extract of soil fungi. It is a powerful immunosupressant with a specific action on T-lymphocytes. It is used for the prophylaxis of graft rejection in organ and tissue transplantation. (From Martindale, The Extra Pharmacopoeia, 30th ed). Cyclosporin A,Ciclosporin,CsA-Neoral,CyA-NOF,Cyclosporin,Cyclosporine A,Neoral,OL 27-400,Sandimmun,Sandimmun Neoral,Sandimmune,CsA Neoral,CsANeoral,CyA NOF,OL 27 400,OL 27400
D017483 Receptors, Vasopressin Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors. Antidiuretic Hormone Receptors,Receptors, V1,Receptors, V2,V1 Receptors,V2 Receptors,Vasopressin Receptors,8-Arg-Vasopressin Receptor,Antidiuretic Hormone Receptor,Antidiuretic Hormone Receptor 1a,Antidiuretic Hormone Receptor 1b,Arginine Vasopressin Receptor,Argipressin Receptor,Argipressin Receptors,Receptor, Arginine(8)-Vasopressin,Renal-Type Arginine Vasopressin Receptor,V1 Receptor,V1a Vasopressin Receptor,V1b Vasopressin Receptor,V2 Receptor,Vascular-Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor,Vasopressin Receptor 1,Vasopressin Type 1A Receptor,Vasopressin V1a Receptor,Vasopressin V1b Receptor,Vasopressin V2 Receptor,Vasopressin V3 Receptor,8 Arg Vasopressin Receptor,Hormone Receptor, Antidiuretic,Hormone Receptors, Antidiuretic,Receptor, Antidiuretic Hormone,Receptor, Arginine Vasopressin,Receptor, Argipressin,Receptor, V1,Receptor, V2,Receptor, Vasopressin,Receptor, Vasopressin V1b,Receptor, Vasopressin V3,Receptors, Antidiuretic Hormone,Receptors, Argipressin,Renal Type Arginine Vasopressin Receptor,V1b Receptor, Vasopressin,Vascular Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor, V1b

Related Publications

A Lo Russo, and A C Passaquin, and U T Rüegg
August 1988, Biochemical and biophysical research communications,
A Lo Russo, and A C Passaquin, and U T Rüegg
August 1990, American journal of hypertension,
A Lo Russo, and A C Passaquin, and U T Rüegg
July 1991, Laboratory investigation; a journal of technical methods and pathology,
A Lo Russo, and A C Passaquin, and U T Rüegg
December 1988, Japanese circulation journal,
A Lo Russo, and A C Passaquin, and U T Rüegg
January 2002, Journal of hypertension,
A Lo Russo, and A C Passaquin, and U T Rüegg
September 1987, Biochemical and biophysical research communications,
A Lo Russo, and A C Passaquin, and U T Rüegg
July 1991, FEBS letters,
A Lo Russo, and A C Passaquin, and U T Rüegg
January 1991, European journal of clinical pharmacology,
A Lo Russo, and A C Passaquin, and U T Rüegg
February 2008, Journal of atherosclerosis and thrombosis,
Copied contents to your clipboard!