Differential functional significance of AP-1 binding sites in the promoter of the gene encoding mouse tissue inhibitor of metalloproteinases-3. 1997

H Kim, and W D Pennie, and Y Sun, and N H Colburn
Gene Regulation Section, Laboratory of Biochemical Physiology, National Cancer Institute, Frederick Cancer Research & Development Center, Frederick, MD 21702, USA.

Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular-matrix-associated protein that suppresses tumorigenicity or invasion in several model systems. We have identified, by in vitro footprinting, six AP-1 (activator protein-1) or AP-1-like binding sites in the mouse TIMP-3 promoter that bind purified c-Jun homodimers. Electrophoretic mobility shift assays revealed that the non-consensus fifth AP-1 binding site (AP-720; nt -720 to -714) had the strongest binding activity for recombinant c-Jun protein, and that the fourth binding site (AP-763; nt -763 to -754) and AP-720 showed strong binding activity for cellular nuclear proteins. Antibody supershift and blocking experiments suggest that AP-720, but not AP-763, binds authentic AP-1 components. Transient transfection reporter assays of deletion constructs showed that the region spanning AP-720 has the highest transcriptional activity, and that sequences 5' to this region (nt -2846 to -747) may contain negative regulatory elements. The deletion construct containing about 500 nt 5' to the transcriptional start, but no AP-1 sites, showed lower but significant activity, suggesting both AP-1-dependent and -independent regulation of the mouse TIMP-3 promoter. Mutational inactivation of AP-720 abolished the activity increment that distinguished the reporter construct containing both AP-720 and sixth AP-1 binding site (AP-617; nt -617 to -611) from that containing only AP-617. In summary, we report here that both AP-1 and non-AP-1 elements contribute to activity, with the non-consensus AP-1 site at -720 showing the greatest functional significance among the AP-1 sites.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

H Kim, and W D Pennie, and Y Sun, and N H Colburn
May 1997, Investigative ophthalmology & visual science,
H Kim, and W D Pennie, and Y Sun, and N H Colburn
March 1998, Developmental dynamics : an official publication of the American Association of Anatomists,
H Kim, and W D Pennie, and Y Sun, and N H Colburn
July 2003, Developmental dynamics : an official publication of the American Association of Anatomists,
H Kim, and W D Pennie, and Y Sun, and N H Colburn
April 2004, Journal of cellular biochemistry,
H Kim, and W D Pennie, and Y Sun, and N H Colburn
October 1999, The Journal of biological chemistry,
H Kim, and W D Pennie, and Y Sun, and N H Colburn
October 2000, The Journal of biological chemistry,
Copied contents to your clipboard!