'Quantal' calcium release operated by membrane voltage in frog skeletal muscle. 1997

G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA.

1. Ca2+ transients and Ca2+ release flux were determined optically in cut skeletal muscle fibres under voltage clamp. 'Decay' of release during a depolarizing pulse was defined as the difference between the peak value of release and the much lower steady level reached after about 100 ms of depolarization. Using a double-pulse protocol, the inactivating effect of release was measured by 'suppression', the difference between the peak values of release in the test pulse, in the absence and presence of a conditioning pulse that closely preceded the test pulse. 2. The relationship between decay and suppression was found to follow two simple arithmetic rules. Whenever the conditioning depolarization was less than or equal to the test depolarization, decay in the conditioning release was approximately equal to suppression of the test release. Whenever the conditioning depolarization was greater than that of the test, suppression was complete, i.e. test release was reduced to a function that increased monotonically to a steady level. The steady level was the same with or without conditioning. 3. These arithmetic rules suggest that inactivation of Ca2+ release channels is strictly and fatally linked to their activation. More than a strict linkage, however, is required to explain the arithmetic properties. 4. The arithmetic rules of inactivation result in three other properties that are inexplicable with classical models of channel gating: constant suppression, incremental inactivation and increment detection. These properties were first demonstrated for inositol trisphosphate (IP3)-sensitive channels and used to define IP3-induced release as quantal. In this sense, it can now be stated that skeletal muscle Ca2+ release is activated by membrane voltage in a quantal manner. 5. For both classes of intracellular Ca2+ channels, one explanation of the observations is the existence of subsets of channels with different sensitivities (to voltage or agonist dose). In an alternative explanation, channels are identical, but have a complex repertoire of voltage- or dose-dependent responses.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
August 1985, Journal of muscle research and cell motility,
G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
March 1984, The Journal of physiology,
G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
June 1996, The Journal of physiology,
G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
March 2024, The Journal of membrane biology,
G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
January 2006, Biological research,
G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
April 1988, The Journal of physiology,
G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
September 1998, The Journal of physiology,
G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
April 1986, The Journal of physiology,
G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
June 1986, The Journal of physiology,
G Pizarro, and N Shirokova, and A Tsugorka, and E Ríos
May 1990, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!