Gas chromatographic method using electron-capture detection for the determination of musk xylene in human blood samples. Biological monitoring of the general population. 1997

J Angerer, and H U Käfferlein
Institute and Clinic of Occupational, Social and Environmental Medicine, Erlangen, Germany.

Musk xylene (2,4,6-trinitro-1,3-dimethyl-5-tert.-butylbenzene, MX), a synthetic musk often used in different fragrances and soaps to substitute the natural musk, is a potential contaminant of humans. In this publication, a specific and sensitive detection method for the determination of musk xylene in human blood samples is described. The clean-up of the blood samples includes an extraction step followed by a solid-phase adsorption to separate MX from other plasma components. Separation and detection was carried out by capillary gas chromatography and an electron capture detector (GC-ECD). The results were verified using qualitative capillary gas chromatography and a mass selective detector with electron impact ionisation (GC-EI-MS). epsilon-Hexachlorocyclohexane (epsilon-HCH) is used as internal standard. The reliability of the GC-ECD method has been proved. The relative standard deviations of the within-series imprecision were 12.7% for samples with a concentration of 0.5 microg/l and 2.1% for samples with a concentration of 5.0 microg/l, whereas the relative standard deviations for the between-day imprecision were 14.9% (0.5 microg/l samples) and 3.4% (5.0 microg/l samples). The losses during sample treatment were between 10.1% and 17.8%. No interfering peaks were observed. The absolute detection limit was 0.1 microg/l plasma. A total of 72 human blood samples were analysed to determine the MX concentrations within the general population. In 66 of the 72 human blood samples, the MX concentrations ranged from 0.10 to 1.12 microg/l plasma for the described method. In six samples no MX was detected. The median concentration was 0.24+/-0.23 microg MX/l plasma. The 95 percentile was 0.79 microg/l. No correlation could be found between MX concentrations and smoking habit, broca index, age, sex as well as fish consumption habits. Nevertheless, the results demonstrate the exposure of the general population to MX.

UI MeSH Term Description Entries
D008297 Male Males
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D010476 Perfume A substance, extract, or preparation for diffusing or imparting an agreeable or attractive smell, especially a fluid containing fragrant natural oils extracted from flowers, woods, etc., or similar synthetic oils. (Random House Unabridged Dictionary, 2d ed)
D002849 Chromatography, Gas Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix. Chromatography, Gas-Liquid,Gas Chromatography,Chromatographies, Gas,Chromatographies, Gas-Liquid,Chromatography, Gas Liquid,Gas Chromatographies,Gas-Liquid Chromatographies,Gas-Liquid Chromatography
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014874 Water Pollutants, Chemical Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water. Chemical Water Pollutants,Landfill Leachate,Leachate, Landfill,Pollutants, Chemical Water
D014992 Xylenes A family of isomeric, colorless aromatic hydrocarbon liquids, that contain the general formula C6H4(CH3)2. They are produced by the destructive distillation of coal or by the catalytic reforming of petroleum naphthenic fractions. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Dimethylbenzenes,Xylene
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

J Angerer, and H U Käfferlein
July 1977, Journal of chromatography,
J Angerer, and H U Käfferlein
May 1994, Journal of chromatography. B, Biomedical applications,
J Angerer, and H U Käfferlein
June 1982, Journal of pharmaceutical sciences,
J Angerer, and H U Käfferlein
January 1985, Journal of chromatography,
J Angerer, and H U Käfferlein
June 1997, Journal of chromatography. B, Biomedical sciences and applications,
J Angerer, and H U Käfferlein
January 1977, Archives of environmental contamination and toxicology,
Copied contents to your clipboard!