Endotoxin priming of thromboxane-related vasoconstrictor responses in perfused rabbit lungs. 1997

W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
Department of Internal Medicine, Justus-Liebig University, 35385 Giessen, Germany.

In prior studies of perfused lungs, endotoxin priming markedly enhanced thromboxane (Tx) generation and Tx-mediated vasoconstriction in response to secondarily applied bacterial exotoxins. The present study addressed this aspect in more detail by employing precursor and intermediates of prostanoid synthesis and performing functional testing of vasoreactivity and measurement of product formation. Rabbit lungs were buffer perfused in the absence or presence of 10 ng/ml endotoxin. Repetitive intravascular bolus applications of free arachidonic acid provoked constant pulmonary arterial pressor responses and constant release reactions of TxA2 and prostaglandin (PG) I2 in nonprimed lungs. Within 60-90 min of endotoxin recirculation, which provoked progressive liberation of tumor necrosis factor-alpha but did not effect any hemodynamic changes by itself, both pressor responses and prostanoid release markedly increased, and both events were fully blocked by cyclooxygenase (Cyclo) inhibition with acetylsalicylic acid (ASA). The unstable intermediate PGG2 provoked moderate pressor responses, again enhanced by preceding endotoxin priming and fully suppressed by ASA. Vasoconstriction also occurred in response to the direct Cyclo product PGH2, again amplified after endotoxin pretreatment, together with markedly enhanced liberation of TxA2 and PGI2. In the presence of ASA, the priming-related increase in pressor responses and the prostanoid formation were blocked, but baseline vasoconstrictor responses corresponding to those in nonprimed lungs were maintained. Pressor responses to the stable Tx analog U-46619 were not significantly increased by endotoxin pretreatment, but some generation of TxA2 and PGI2 was also noted under these conditions. We conclude that endotoxin priming exerts profound effects on the lung vascular prostanoid metabolism, increasing the readiness to react with Tx-mediated vasoconstrictor responses to various stimuli, suggesting that enhanced Cyclo activity is an important underlying event.

UI MeSH Term Description Entries
D008297 Male Males
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011450 Prostaglandin Endoperoxides, Synthetic Synthetic compounds that are analogs of the naturally occurring prostaglandin endoperoxides and that mimic their pharmacologic and physiologic activities. They are usually more stable than the naturally occurring compounds. Prostaglandin Endoperoxide Analogs,Prostaglandin Endoperoxide Analogues,Synthetic Prostaglandin Endoperoxides,Analogues, Prostaglandin Endoperoxide,Endoperoxide Analogues, Prostaglandin,Endoperoxides, Synthetic Prostaglandin
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D011462 Prostaglandins G A group of physiologically active prostaglandin endoperoxides. They are precursors in the biosynthesis of prostaglandins and thromboxanes. Most frequently encountered member of this group is the prostaglandin G2. PGG
D011463 Prostaglandins H A group of physiologically active prostaglandin endoperoxides. They are precursors in the biosynthesis of prostaglandins and thromboxanes. The most frequently encountered member of this group is the prostaglandin H2.
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
November 1993, The American review of respiratory disease,
W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
June 2000, American journal of physiology. Lung cellular and molecular physiology,
W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
August 1999, Pharmacology,
W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
August 1984, The Journal of clinical investigation,
W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
September 1997, American journal of respiratory and critical care medicine,
W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
May 1995, Respiration physiology,
W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
January 1984, The American review of respiratory disease,
W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
August 1991, Prostaglandins, leukotrienes, and essential fatty acids,
W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
September 1989, Pediatric research,
W Steudel, and H J Krämer, and D Degner, and S Rosseau, and H Schütte, and D Walmrath, and W Seeger
October 1991, The American journal of physiology,
Copied contents to your clipboard!