Hepatocyte growth factor, keratinocyte growth factor, and other growth factor-receptor systems in the lens. 1997

J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, USA.

OBJECTIVE To examine the expression and function of hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), epidermal growth factor (EGF) and other growth factor-cytokine-receptor systems in lens epithelial cells. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis were used to examine the expression of messenger RNAs in primary cultured rabbit and human lens cells and in ex vivo rabbit lens tissue. Protein expression and the effect of HGF and KGF on crystallin expression in lens epithelial cells were evaluated by immunoprecipitation and Western blot analysis. The effect of exogenous HGF, KGF, and EGF and of the coculture of lens epithelial cells with corneal endothelial cells on the proliferation of rabbit lens cells in a Transwell system was determined by cell counting. RESULTS Messenger RNAs and proteins of HGF and KGF were expressed in primary rabbit lens epithelial cells and in ex vivo rabbit lens epithelial tissue. Human lens cells also expressed the mRNAs. Other growth factors and receptor messenger RNAs were also expressed. Hepatocyte and keratinocyte growth factors, and coculture with corneal endothelial cells stimulated proliferation of rabbit lens epithelial cells. In first-passage rabbit lens cells, HGF, KGF, and EGF increased the expression of alpha and beta crystallins. CONCLUSIONS Hepatocyte and keratinocyte growth factor-receptor systems are expressed in lens cells. HGF and KGF are not expressed in epithelial cells in such tissues as skin, cornea, and lacrimal gland in which fibroblastic and epithelial cells interact in the formation of an organ. Expression of these growth factors in the lens may have evolved because the lens cells are relatively isolated within the anterior chamber of the eye. Our results suggest, however, that growth factors released by the corneal endothelium also could modulate lens functions (aquecrine interactions).

UI MeSH Term Description Entries
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003459 Crystallins A heterogeneous family of water-soluble structural proteins found in cells of the vertebrate lens. The presence of these proteins accounts for the transparency of the lens. The family is composed of four major groups, alpha, beta, gamma, and delta, and several minor groups, which are classed on the basis of size, charge, immunological properties, and vertebrate source. Alpha, beta, and delta crystallins occur in avian and reptilian lenses, while alpha, beta, and gamma crystallins occur in all other lenses. Lens Proteins,Crystallin,Eye Lens Protein,Lens Protein, Eye,Protein, Eye Lens,Proteins, Lens
D004728 Endothelium, Corneal Single layer of large flattened cells covering the surface of the cornea. Anterior Chamber Epithelium,Corneal Endothelium,Endothelium, Anterior Chamber,Epithelium, Anterior Chamber,Anterior Chamber Endothelium
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast

Related Publications

J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
July 1993, Investigative ophthalmology & visual science,
J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
December 2003, Revue des maladies respiratoires,
J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
April 1996, Investigative ophthalmology & visual science,
J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
September 2007, Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition,
J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
June 1996, In vitro cellular & developmental biology. Animal,
J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
October 2001, European journal of clinical investigation,
J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
February 2005, Journal of cataract and refractive surgery,
J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
July 1993, Stem cells (Dayton, Ohio),
J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
June 1995, The Journal of investigative dermatology,
J Weng, and Q Liang, and R R Mohan, and Q Li, and S E Wilson
February 2000, Oncogene,
Copied contents to your clipboard!