Aerobic regulation of cytochrome d oxidase (cydAB) operon expression in Escherichia coli: roles of Fnr and ArcA in repression and activation. 1997

P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
Department of Microbiology and Molecular Genetics and the Molecular Biology Institute, University of California, Los Angeles 90095-1489, USA.

The cydAB operon of Escherichia coli encodes the cytochrome d oxidase complex, one of two aerobic terminal oxidases that catalyses the oxidation of ubiquinol-8 and the reduction of oxygen to water. This enzyme has a higher affinity for oxygen than the cytochrome o oxidase complex and accumulates as oxygen becomes limiting. Expression of the cydAB operon is microaerobically controlled by the ArcA/ArcB two-component regulatory system and by Fnr. To understand how ArcA and Fnr contribute to this control, a set of cyd-lacZ reporter fusions were constructed and analysed in vivo. Two cydAB promoters, designated P1 and P2, were identified by primer extension analysis and are located 288 and 173 bp upstream of the start of cydA translation respectively. Transcription from promoter P1 was shown to be regulated by both Fnr and ArcA in response to anaerobiosis. DNasel footprint experiments revealed the locations of two Fnr binding sites at the P1 promoter: one is centred at the start of cyd transcription, while the other is positioned 53.5 bp upstream. A single ArcA-phosphate binding site of 49 bp, centred 93 bp upstream of promoter P1, was identified to be sufficient for the activation of cydAB expression. Based on the results of the in vitro and in vivo studies, a working model for ArcA activation and Fnr repression of cydAB transcription is proposed.

UI MeSH Term Description Entries
D007506 Iron-Sulfur Proteins A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation. Iron-Sulfur Protein,Iron Sulfur Proteins,Iron Sulfur Protein,Protein, Iron-Sulfur,Proteins, Iron Sulfur,Proteins, Iron-Sulfur,Sulfur Proteins, Iron
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning

Related Publications

P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
September 2000, Molecular microbiology,
P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
February 1992, FEMS microbiology letters,
P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
March 1994, Molecular microbiology,
P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
December 2000, Molecular microbiology,
P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
October 1996, Current microbiology,
P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
November 1990, Journal of bacteriology,
P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
August 1997, Journal of bacteriology,
P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
July 1997, Journal of bacteriology,
P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
March 1997, Microbiology (Reading, England),
P A Cotter, and S B Melville, and J A Albrecht, and R P Gunsalus
May 1988, Molecular microbiology,
Copied contents to your clipboard!