Induction of molecular chaperones by hyperosmotic stress in mouse inner medullary collecting duct cells. 1997

M I Rauchman, and J Pullman, and S R Gullans
Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

The extreme hyperosmotic conditions that exist in the renal inner medulla enable the urinary concentrating mechanism to function. In this study, we evaluated whether stress-related molecular chaperones are induced in response to hyperosmotic stress in mouse inner medullary collecting duct (mIMCD3) cells. Exposure of cells to medium supplemented with 100 mM NaCl for 4 or 24 h resulted in an increase in heat shock protein-72 (HSP-72) (inducible form) by Western blot. Immunocytochemistry confirmed the increase of HSP-72 and showed that hyperosmotic stress resulted in a localization of HSP-72 predominantly to the nucleoplasm that surrounds the nucleoli and to the cytoplasm, a subcellular distribution pattern different from that seen with heat shock. Using a denatured protein (casein)-affinity column with ATP elution, we identified a number of putative molecular chaperones (46, 60, 78, and 200 kDa) that are upregulated in response to 4 h of hyperosmotic NaCl treatment. Microsequencing identified one of these proteins to be the mitochondrial chaperone mtHSP-70, a member of HSP-70 family, and another to be similar to beta-actin. We also found high levels of HSP-72 in cells chronically adapted to hypertonicity, indicating that chaperones are still required to maintain certain cellular functions even after nonperturbing organic osmolytes are known to accumulate. These results suggest an important role for molecular chaperones in the adaptation of renal medullary epithelial cells to the hyperosmotic conditions that exist in the inner medulla in vivo.

UI MeSH Term Description Entries
D006982 Hypertonic Solutions Solutions that have a greater osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Hypertonic Solution,Solution, Hypertonic,Solutions, Hypertonic
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M I Rauchman, and J Pullman, and S R Gullans
August 2005, The Journal of urology,
M I Rauchman, and J Pullman, and S R Gullans
August 2000, American journal of physiology. Renal physiology,
M I Rauchman, and J Pullman, and S R Gullans
September 2013, Interdisciplinary toxicology,
M I Rauchman, and J Pullman, and S R Gullans
April 1993, Journal of the American Society of Nephrology : JASN,
M I Rauchman, and J Pullman, and S R Gullans
August 1991, Journal of the American Society of Nephrology : JASN,
M I Rauchman, and J Pullman, and S R Gullans
October 1995, The American journal of physiology,
M I Rauchman, and J Pullman, and S R Gullans
February 2011, Cellular signalling,
M I Rauchman, and J Pullman, and S R Gullans
March 1988, The American journal of physiology,
M I Rauchman, and J Pullman, and S R Gullans
October 1994, The Journal of biological chemistry,
M I Rauchman, and J Pullman, and S R Gullans
June 2013, Journal of visualized experiments : JoVE,
Copied contents to your clipboard!