The breast and ovarian cancer susceptibility gene BRCA1 encodes a phosphoprotein of 1863 amino acids containing a highly conserved N-terminal RING finger domain and a C-terminal acidic region typical of several transcription factors. BRCA1 acts as a tumor suppressor that may inhibit the proliferation of breast and ovarian cancer cells. To gain knowledge and to further understand the biological function of BRCA1, we examined its localization and expression in various tissues from 20-year-old male and female cynomolgus monkeys (Macaca fascicularis) by in situ hybridization using a 35S-labeled human BRCA1 DNA probe fragment derived from exon 11. In mammary glands, BRCA1 expression was primarily located in the duct and acinar epithelial cells. In the ovary, strong BRCA1 expression was detected in granulosa cells in maturing follicles and in luteal cells of the corpus luteum, as well as in the epithelial cells overlying the tunica albuginea. Specific signal was also observed in epithelial cells of the oviduct, endometrium, cervix, and vagina. Moreover, BRCA1 was strongly expressed in the germinal epithelium of the seminiferous tubules as well as over interstitial cells of the testis, in the epithelium of the epididymis, and in epithelial cells bordering the glandular lumen of the seminal vesicles. Signal was also detected in both the anterior and posterior lobes of the pituitary. In the adrenal glands, the signal was greater in the zona glomerulosa compared to the two other cortical zones, whereas the medullary cells were weakly labeled. In the stomach, and in small and large intestine, epithelial cells of the crypts usually exhibited stronger positive reaction than that observed over surface epithelial lining cells. BRCA1 expression was also found in diverse types of epithelial cells of the thyroid, pancreas, salivary glands, trachea, urinary bladder, and kidneys. In addition to demonstrating widespread tissue- and cell-specific expression of the BRCA1 gene in primate tissues, primarily in the epithelia, we observed a weaker but specific signal in various other cell types, suggesting a generalized biological function of BRCA1.