Spatial organization of facial vibrissae and cortical barrels in the guinea pig and golden hamster. 1997

S Haidarliu, and E Ahissar
Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel. bnsebast@weizmann.ac.il

The arrangements of vibrissae in guinea pigs and golden hamsters were previously reported to be different from those in mice and rats. Whereas the mystacial pads in mice and rats include four straddlers and five rows of vibrissae, guinea pigs were described to possess six rows of irregularly aligned mystacial vibrissae and no straddlers, and golden hamsters to include seven vibrissal rows and also no straddlers. We found that all of these four species possess similar vibrissal arrangements within the mystacial pad. To demonstrate this similarity, we developed a new method of sinus hair visualization in flattened and cleared preparations of the mystacial pad. Intrinsic muscles of the mystacial pad that were revealed in thick histological preparations showed clearly the structural and functional relationships between straddlers and vibrissal rows. To verify this finding, and to extend the knowledge of vibrissal cortical representations in guinea pigs and golden hamsters, we have investigated the spatial organization and the functional vibrissal representations of barrels in the posteromedial barrel subfield (PMBSF) of these rodents. The barrel morphology was clearly preserved in Nissl-stained sections and sections processed for cytochrome oxidase of flattened cerebral cortices. We demonstrate that the vibrissal arrangement in the mystacial pad is replicated in the PMBSF of guinea pigs and golden hamsters and that this arrangement is similar to that found in mice and rats. To facilitate comparative studies, these findings strongly recommend the use, in guinea pigs and golden hamsters, of the same classifications and nomenclatures that are used in mice and rats to describe mystacial vibrissae and cortical barrels.

UI MeSH Term Description Entries
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009626 Terminology as Topic Works about the terms, expressions, designations, or symbols used in a particular science, discipline, or specialized subject area. Etymology,Nomenclature as Topic,Etymologies
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D014738 Vibrissae Stiff hairs projecting from the face around the nose of most mammals, acting as touch receptors. Whiskers,Whisker

Related Publications

S Haidarliu, and E Ahissar
December 1975, Zeitschrift fur Allgemeinmedizin,
S Haidarliu, and E Ahissar
May 1985, The Journal of comparative neurology,
S Haidarliu, and E Ahissar
January 1968, Voprosy onkologii,
S Haidarliu, and E Ahissar
January 1976, Zeitschrift fur Versuchstierkunde,
S Haidarliu, and E Ahissar
April 1955, Revue belge de pathologie et de medecine experimentale,
S Haidarliu, and E Ahissar
January 1991, Neirofiziologiia = Neurophysiology,
S Haidarliu, and E Ahissar
May 1976, Pflugers Archiv : European journal of physiology,
S Haidarliu, and E Ahissar
November 1945, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
S Haidarliu, and E Ahissar
February 1985, Journal of morphology,
S Haidarliu, and E Ahissar
November 1959, Endocrinology,
Copied contents to your clipboard!