Functional organization in cortical barrels of normal and vibrissae-damaged mice: a (3H) 2-deoxyglucose study. 1985

D Durham, and T A Woolsey

The large mystacial vibrissae on the faces of rodents have punctate representations in all stations in the central trigeminal pathway, including layer IV of the somatosensory cortex (SmI). The cortical whisker correlates, multicellular units termed barrels, are not present at birth, and damage to the vibrissae during the first postnatal week results in altered adult cytoarchitectonics. The anatomical effects of vibrissae damage in the cortex have been well documented; here, we investigated the functional organization of altered SmI barrels with a high-resolution 2-deoxyglucose (2-DG) technique (Durham et al., '81, J. Neurosci. 1:519). The middle row of vibrissae was cauterized in 1-, 2-, 3-, 4-, or 5-day-old mice, and the animals were allowed to survive to sexual maturity. Various combinations of vibrissae were clipped acutely 24 hours prior to injection of 2-4 mCi of (3H)2-DG. Mice actively explored an empty cage for 60 minutes, stimulating the remaining vibrissae. The mice then were perfused and their brains prepared for paraffin histology and emulsion autoradiography. In tangential sections through layer IV, patterns of neuropil and cell body labeling were analyzed with respect to barrel cytoarchitecture in normal and vibrissae-damaged mice. In both control and experimental animals, patterns of neuropil and cell somata label corresponded exactly to barrel boundaries, whether normal or altered by vibrissae damage. Only those barrels for which vibrissae were intact had high levels of label, with anterior barrels more heavily labeled. Many neurons in the septa between these barrels and the adjacent barrels were labeled also. We found slightly higher neuropil label in the cortical zone corresponding to the damaged zone on the face in animals lesioned at any time. These data indicate that physiological somatotopy in vibrissae-damaged animals matches the anatomical cytoarchitecture.

UI MeSH Term Description Entries
D008297 Male Males
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005260 Female Females
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography

Related Publications

D Durham, and T A Woolsey
September 1997, The Journal of comparative neurology,
D Durham, and T A Woolsey
April 1985, The Journal of comparative neurology,
D Durham, and T A Woolsey
August 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D Durham, and T A Woolsey
January 1991, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
D Durham, and T A Woolsey
January 1976, Neuroscience and behavioral physiology,
D Durham, and T A Woolsey
September 2003, Experimental eye research,
D Durham, and T A Woolsey
January 1985, The Journal of comparative neurology,
D Durham, and T A Woolsey
March 1981, Brain research,
Copied contents to your clipboard!