Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. 1997

B Kleessen, and G Stoof, and J Proll, and D Schmiedl, and J Noack, and M Blaut
German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany.

The effects of different forms of resistant potato starch (RS) on the major microbial population groups and short-chain fatty acids (SCFA) in the cecum and feces of rats were studied over a 5-mo feeding period. Thirty 8-wk-old male Wistar rats, averaging 210 g initial body weight, were adapted for 7 d to a balanced basal diet containing 60% waxy maize starch devoid of any RS. On d 8, three groups of 10 rats each were fed diets containing the following forms of starch: 1) rapidly digestible waxy maize starch (basal diet), 2) a mixture of 83.3% waxy maize starch and 16.7% native granular potato starch (RS 1), or 3) a mixture of 33.3% waxy maize starch and 66.7% modified potato starch (RS 2). The final RS content in RS 1 and RS 2 was 10%. Fecal samples were collected at d 8 and 1, 3, and 5 mo after the start of the experiment. Cecal contents were taken after 5 mo. The colony counts of microbial groups did not vary with time in the control or the RS 1 group (P > .05). Only the number of Bacteroides/fusobacteria decreased between mo 1 and 5 in rats fed RS 1 (P < .05). The RS 2 diet led to a significant increase in total culturable bacteria, lactobacilli, streptococci, and enterobacteria between mo 1 and 5. The RS 1 and RS 2 diets stimulated the growth of bifidobacteria. Cecal numbers of lactobacilli, streptococci, and enterobacteria were higher in rats fed RS 2 than in rats fed RS 1 or control diet (P < .05). Lactobacillus cellobiosus occurred only in rats fed RS 1 or RS 2. Acetate increased in mo 3 compared with d 8 in all groups (P < .05). The fecal and cecal SCFA displayed higher concentrations of acetate and propionate and a higher molar proportion of propionate in RS 2 than in RS 1 or control rats (P < .05). Stimulation of bifidobacteria, lactobacilli, and SCFA may be useful for the suppression of pathogenic organisms in the colon.

UI MeSH Term Description Entries
D007778 Lactobacillus A genus of gram-positive, microaerophilic, rod-shaped bacteria occurring widely in nature. Its species are also part of the many normal flora of the mouth, intestinal tract, and vagina of many mammals, including humans. Lactobacillus species are homofermentative and ferment a broad spectrum of carbohydrates often host-adapted but do not ferment PENTOSES. Most members were previously assigned to the Lactobacillus delbrueckii group. Pathogenicity from this genus is rare.
D008297 Male Males
D011198 Solanum tuberosum A plant species of the genus SOLANUM, family SOLANACEAE. The starchy roots are used as food. SOLANINE is found in green parts. Potatoes,Potato,Solanum tuberosums,tuberosum, Solanum,tuberosums, Solanum
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D002432 Cecum The blind sac or outpouching area of the LARGE INTESTINE that is below the entrance of the SMALL INTESTINE. It has a worm-like extension, the vermiform APPENDIX. Cecums
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes

Related Publications

B Kleessen, and G Stoof, and J Proll, and D Schmiedl, and J Noack, and M Blaut
January 2008, Annals of nutrition & metabolism,
B Kleessen, and G Stoof, and J Proll, and D Schmiedl, and J Noack, and M Blaut
January 1997, The Journal of nutrition,
B Kleessen, and G Stoof, and J Proll, and D Schmiedl, and J Noack, and M Blaut
January 2014, Acta biochimica Polonica,
B Kleessen, and G Stoof, and J Proll, and D Schmiedl, and J Noack, and M Blaut
September 2015, Journal of agricultural and food chemistry,
B Kleessen, and G Stoof, and J Proll, and D Schmiedl, and J Noack, and M Blaut
February 1999, Journal of applied microbiology,
B Kleessen, and G Stoof, and J Proll, and D Schmiedl, and J Noack, and M Blaut
July 2021, International journal of biological macromolecules,
B Kleessen, and G Stoof, and J Proll, and D Schmiedl, and J Noack, and M Blaut
April 2010, Journal of agricultural and food chemistry,
B Kleessen, and G Stoof, and J Proll, and D Schmiedl, and J Noack, and M Blaut
November 1986, American journal of veterinary research,
B Kleessen, and G Stoof, and J Proll, and D Schmiedl, and J Noack, and M Blaut
January 2020, Bioscience of microbiota, food and health,
Copied contents to your clipboard!