Ultrastructural localization of cadherin in the adult guinea-pig organ of Corti. 1997

S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
Department of Communication and Neuroscience, Keele University, Staffs, UK coa03@keele.ac.uk

The apices of the majority of cells of the organ of Corti are connected together by junctional complexes to form the reticular lamina, a barrier that prevents the mixing of endolymph and perilymph. These complexes include tight junctions, adherens junctions and desmosomes. Further information is required about the identity and distribution of the molecules involved in these connections if the function and organization of the reticular lamina are to be well understood. One major category of molecules occurring in adherens junctions and desmosomes, and involved in the maintenance of tissue integrity, is the cadherins. However, although cadherin has been identified in junctions between supporting cells in the adult mammalian organ of Corti at the light microscopic level, its ultrastructural distribution has not so far been described. A post-embedding immunogold labelling technique has therefore been used in conjunction with a monoclonal antibody to cadherin to investigate its ultrastructural distribution in the adult guinea-pig reticular lamina. Immunolabelling is observed in hair cell-supporting cell junctions and in supporting cell-supporting cell junctions. In addition, there is more labelling associated with inner hair cell-supporting cell junctions than with outer hair cell-supporting cell junctions. This may indicate that the junctions associated with the two types of hair cell have different functional properties.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009925 Organ of Corti The spiral EPITHELIUM containing sensory AUDITORY HAIR CELLS and supporting cells in the cochlea. Organ of Corti, situated on the BASILAR MEMBRANE and overlaid by a gelatinous TECTORIAL MEMBRANE, converts sound-induced mechanical waves to neural impulses to the brain. Basilar Papilla,Corti's Organ,Spiral Organ,Corti Organ,Cortis Organ,Organ, Corti's,Organ, Spiral,Organs, Spiral,Papilla, Basilar,Spiral Organs
D003689 Vestibular Nucleus, Lateral Vestibular nucleus lying immediately superior to the inferior vestibular nucleus and composed of large multipolar nerve cells. Its upper end becomes continuous with the superior vestibular nucleus. Deiter Nucleus,Lateral Vestibular Nucleus,Deiter's Nucleus,Nucleus Vestibularis Lateralis,Nucleus Vestibularis Magnocellularis,Nucleus of Deiters,Deiters Nucleus,Nucleus Vestibularis Laterali,Nucleus Vestibularis Magnocellulari,Nucleus, Deiter,Nucleus, Deiter's,Nucleus, Lateral Vestibular,Vestibularis Laterali, Nucleus,Vestibularis Lateralis, Nucleus,Vestibularis Magnocellulari, Nucleus,Vestibularis Magnocellularis, Nucleus
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006199 Hair Cells, Auditory, Inner Auditory sensory cells of organ of Corti, usually placed in one row medially to the core of spongy bone (the modiolus). Inner hair cells are in fewer numbers than the OUTER AUDITORY HAIR CELLS, and their STEREOCILIA are approximately twice as thick as those of the outer hair cells. Auditory Hair Cell, Inner,Auditory Hair Cells, Inner,Cochlear Inner Hair Cell,Cochlear Inner Hair Cells,Hair Cell, Auditory, Inner,Inner Auditory Hair Cell,Inner Auditory Hair Cells,Inner Hair Cells,Cell, Inner Hair,Cells, Inner Hair,Hair Cell, Inner,Hair Cells, Inner,Inner Hair Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015820 Cadherins Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body. Cadherin,E-Cadherins,Epithelial-Cadherin,Liver Cell Adhesion Molecules,N-Cadherins,Neural Cadherin,P-Cadherins,Uvomorulin,Cadherin-1,Cadherin-2,Cadherin-3,E-Cadherin,Epithelial-Cadherins,Liver Cell Adhesion Molecule,N-Cadherin,Neural Cadherins,P-Cadherin,Placental Cadherins,Cadherin 1,Cadherin 2,Cadherin 3,Cadherin, Neural,Cadherins, Neural,Cadherins, Placental,E Cadherin,E Cadherins,Epithelial Cadherin,Epithelial Cadherins,N Cadherin,N Cadherins,P Cadherin,P Cadherins
D016610 Tissue Embedding The technique of placing cells or tissue in a supporting medium so that thin sections can be cut using a microtome. The medium can be paraffin wax (PARAFFIN EMBEDDING) or plastics (PLASTIC EMBEDDING) such as epoxy resins. Embedding, Tissue

Related Publications

S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
August 2003, Journal of the American Academy of Audiology,
S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
October 1984, Hearing research,
S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
January 1997, ORL; journal for oto-rhino-laryngology and its related specialties,
S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
January 1965, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
December 1998, Hearing research,
S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
January 1998, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery,
S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
January 1973, Acta oto-laryngologica,
S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
January 1975, Advances in anatomy, embryology, and cell biology,
S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
December 1985, Brain research,
S Mahendrasingam, and Y Katori, and D N Furness, and C M Hackney
January 1988, Archives of oto-rhino-laryngology,
Copied contents to your clipboard!