RPE65, the major retinal pigment epithelium microsomal membrane protein, associates with phospholipid liposomes. 1997

E Tsilou, and C P Hamel, and S Yu, and T M Redmond
Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

The retinal pigment epithelium (RPE)-specific protein RPE65 is the major protein of the RPE microsomal membrane fraction. Though RPE65 lacks transmembrane domains or signal peptide, detergents are required for its maximally effective solubilization in isotonic buffers. However, in 0.75-1.0 M KCl, RPE65 is as soluble without detergent, indicating a peripheral membrane association. We wished to understand why this non-membrane-inserted protein was so closely associated with RPE microsomal membranes. To explore the possible involvement of interactions with phospholipids, an isotonic salt-soluble extract of RPE was incubated with phosphatidylcholine (PC)/phosphatidylserine (PS)/phosphatidylinositol liposomes and centrifuged to sediment the liposomes. RPE65 cosedimented with the liposome pellet. RPE65 also cosedimented with synthetic dipalmitoyl-, 1-palmitoyl, 2-docosahexaenoyl-PC or dipalmitoyl-PS liposomes. Incubation with 1 mM Ca2+ or 1 mM EGTA had no effect, indicating a Ca2+-independent association. A spectrophotometric assay showed that this interaction of RPE65 with phospholipid vesicles resulted in increased light scattering, consistent with phospholipid vesicle aggregation. Resonance energy transfer experiments showed that any putative aggregation occurred without subsequent vesicle fusion. This PC affinity was further confirmed by incubation of RPE extract with dimyristoyl-PC-immobilized artificial membrane (IAM.PC) matrix. The RPE65 selectively bound and was elutable with 2% detergent. This RPE65-phospholipid liposome association may explain the solubilization characteristics of RPE65 and may be related to the function of RPE65 and to its physical association with the RPE smooth endoplasmic reticulum.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene

Related Publications

E Tsilou, and C P Hamel, and S Yu, and T M Redmond
May 2022, Progress in retinal and eye research,
E Tsilou, and C P Hamel, and S Yu, and T M Redmond
August 2010, International journal of biological macromolecules,
E Tsilou, and C P Hamel, and S Yu, and T M Redmond
August 2005, Cell,
E Tsilou, and C P Hamel, and S Yu, and T M Redmond
March 1998, Investigative ophthalmology & visual science,
E Tsilou, and C P Hamel, and S Yu, and T M Redmond
February 1978, Investigative ophthalmology & visual science,
E Tsilou, and C P Hamel, and S Yu, and T M Redmond
May 2017, Photochemistry and photobiology,
E Tsilou, and C P Hamel, and S Yu, and T M Redmond
March 2005, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
E Tsilou, and C P Hamel, and S Yu, and T M Redmond
September 1978, Archives of ophthalmology (Chicago, Ill. : 1960),
E Tsilou, and C P Hamel, and S Yu, and T M Redmond
January 1969, Experimental eye research,
E Tsilou, and C P Hamel, and S Yu, and T M Redmond
April 1994, Genomics,
Copied contents to your clipboard!