Regulation of CYP4A1 and peroxisome proliferator-activated receptor alpha expression by interleukin-1beta, interleukin-6, and dexamethasone in cultured fetal rat hepatocytes. 1997

J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
Laboratoire de Chimie Médicale, CHU Sart-Tilman, Université de Liège, Belgium.

The CYP4A1 isoenzyme induced in rodents by peroxisome proliferators is known to be repressed at a pretranslational level by interferon. Interleukin-1beta (IL-1beta) also reduces CYP4A1-related 12-laurate hydroxylase activity in cultured fetal rat hepatocytes after induction by clofibric acid. In this fetal hepatocyte model, IL-1beta and interleukin-6 (IL-6) were tested for their ability to reduce 12-laurate hydroxylase activity, CYP4A1 apoprotein content, and the CYP4A1 mRNA level. IL-1beta and IL-6 strongly diminished CYP4A1 activity and apoprotein and mRNA levels in a dose- and time-dependent manner. CYP4A1 expression is thus down-regulated at a pretranslational level by these cytokines. As it has been shown that the peroxisome proliferator-activated receptor alpha (PPAR alpha) mediates the induction of the CYP4A1 gene by a peroxisome proliferator, the capacity of IL-1beta or IL-6 to modulate the PPAR alpha mRNA level was tested. It was found that IL-1beta and IL-6 both repress the induction of PPAR alpha expression exerted by the combined action of clofibric acid and dexamethasone. However, even at the highest concentration (10 ng/mL) tested for both cytokines, IL-1beta as well as IL-6 failed to abolish the induction of CYP4A1 by dexamethasone. The mechanism of the protective effect of the synthetic glucocorticoid on CYP4A1 repression by interleukins is discussed.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002995 Clofibric Acid An antilipemic agent that is the biologically active metabolite of CLOFIBRATE. Clofibrinic Acid,2-(4-Chlorophenoxy)-2-methylpropionic Acid,NSC-1149,p-Chlorophenoxyisobutyrate,p-Chlorophenoxyisobutyric Acid,NSC 1149,NSC1149
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005260 Female Females
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
January 2007, The international journal of biochemistry & cell biology,
J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
September 2003, The Journal of biological chemistry,
J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
March 2009, Toxicological sciences : an official journal of the Society of Toxicology,
J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
November 2008, FEBS letters,
J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
February 1996, Archives of biochemistry and biophysics,
J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
October 1995, Research communications in molecular pathology and pharmacology,
J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
January 2008, Pulmonary pharmacology & therapeutics,
J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
June 2008, Biological & pharmaceutical bulletin,
J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
August 2005, Biochemistry,
J H Parmentier, and H Schohn, and M Bronner, and L Ferrari, and A M Batt, and M Dauça, and P Kremers
October 1994, The Journal of biological chemistry,
Copied contents to your clipboard!