Delta-opioid receptor is present in presynaptic axon terminals in the rat nucleus locus coeruleus: relationships with methionine5-enkephalin. 1997

E J van Bockstaele, and K Commons, and V M Pickel
Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA. vanbock1@jeflin.tju.edu

The three classes of opioid receptors, mu, delta, and kappa, are distributed within the locus coeruleus (LC) of the rat brain. We have recently shown with immunoelectron microscopy that the mu-opioid receptor (muOR) is localized prominently to extrasynaptic sites on the plasma membranes of noradrenergic perikarya and dendrites of the LC. To further characterize the cellular distribution of other opioid receptors in this region, in this study, we examined the ultrastructural localization of an antipeptide sequence unique to the delta-opioid receptor (deltaOR) in sections that were also dual labeled for methionine-enkephalin (M-ENK), an opioid peptide known to be an endogenous ligand of the deltaOR. Immunoperoxidase labeling for deltaOR was localized primarily to the plasma membranes of presynaptic axon terminals and was also associated with large dense core vesicles. The deltaOR-labeled axon terminals formed both excitatory (asymmetric) and inhibitory (symmetric) type synaptic specializations with unlabeled dendrites and were frequently apposed by astrocytic processes. Dual labeling showed that, of 180 deltaOR-labeled axon terminals, 16% showed colocalization with M-ENK. These formed both types of synaptic junctions. Peroxidase labeling for deltaOR was also observed occasionally within dendrites, unmyelinated axons, and glial processes. The deltaOR-labeled dendrites were usually postsynaptic to unlabeled axon terminals that contained both small clear and large dense core vesicles. These results provide the first ultrastrucutral evidence that, in the LC, deltaOR may play a role in the presynaptic modulation of release of both excitatory and inhibitory neurotransmitters. They also suggest involvement of deltaOR in autoregulation of M-ENK release from axon terminals in this region.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004744 Enkephalin, Methionine One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Methionine Enkephalin,5-Methionine Enkephalin,Met(5)-Enkephalin,Met-Enkephalin,5 Methionine Enkephalin,Enkephalin, 5-Methionine,Met Enkephalin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

E J van Bockstaele, and K Commons, and V M Pickel
May 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology,
E J van Bockstaele, and K Commons, and V M Pickel
December 1995, The Journal of comparative neurology,
E J van Bockstaele, and K Commons, and V M Pickel
July 2003, Neuroscience letters,
E J van Bockstaele, and K Commons, and V M Pickel
April 2006, The European journal of neuroscience,
Copied contents to your clipboard!