Epidermal growth factor (EGF) receptor density controls mitogenic activation of normal rat kidney (NRK) cells by EGF. 1998

D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
Department of Cell Biology, Faculty of Science, University of Nijmegen, The Netherlands. dlahaye@sci.kun.nl

Normal rat kidney (NRK) fibroblasts are immortalized cells that are strictly dependent on externally added growth factors for proliferation. When cultured in the presence of epidermal growth factor (EGF) as the only growth stimulating hormone, these cells have a normal phenotype and undergo density-dependent growth inhibition. It has been postulated that this density-arrest results from a decrease of EGF receptor levels below a threshold level which makes these cells unresponsive to stimulation by EGF. In the present study, we show that NRK cells, made quiescent by serum-deprivation at submaximum density, are mitogenically still responsive to EGF, but show enhanced mitogenic stimulation after 8 hr pre-treatment with either transforming growth factor beta (TGF beta) or retinoic acid (RA), while prostaglandin F2 alpha (PGF2 alpha) and bradykinin (BK) enhance the mitogenic stimulation by EGF only slightly under these conditions. Addition of TGF beta or RA results in an increase of both 125I-EGF-binding capacity and EGF receptor mRNA levels. Using flow cytometric analysis, we show that pre-treatment with TGF beta or RA increases the percentage of cells entering the cell cycle as a function of time. Furthermore, pre-treatment of the cells with TGF beta or RA increases the rate of mitogen-activated protein kinase (MAPK) phosphorylation by EGF. PGF2 alpha and BK also increase EGF receptor levels, but only with delayed kinetics. These results show that already in serum-deprived quiescent NRK cells, EGF receptor levels limit EGF-induced mitogenic stimulation. This observation provides further evidence for the regulating role of the EGF receptor in density-dependent growth control of NRK cells.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014212 Tretinoin An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE). Retinoic Acid,Vitamin A Acid,Retin-A,Tretinoin Potassium Salt,Tretinoin Sodium Salt,Tretinoin Zinc Salt,Vesanoid,all-trans-Retinoic Acid,beta-all-trans-Retinoic Acid,trans-Retinoic Acid,Acid, Retinoic,Acid, Vitamin A,Acid, all-trans-Retinoic,Acid, beta-all-trans-Retinoic,Acid, trans-Retinoic,Potassium Salt, Tretinoin,Retin A,Salt, Tretinoin Potassium,Salt, Tretinoin Sodium,Salt, Tretinoin Zinc,Sodium Salt, Tretinoin,Zinc Salt, Tretinoin,all trans Retinoic Acid,beta all trans Retinoic Acid,trans Retinoic Acid
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066246 ErbB Receptors A family of structurally related cell-surface receptors that signal through an intrinsic PROTEIN-TYROSINE KINASE. The receptors are activated upon binding of specific ligands which include EPIDERMAL GROWTH FACTORS, and NEUREGULINS. EGF Receptor,Epidermal Growth Factor Receptor,Epidermal Growth Factor Receptor Family Protein,Epidermal Growth Factor Receptor Protein-Tyrosine Kinase,ErbB Receptor,HER Family Receptor,Receptor, EGF,Receptor, Epidermal Growth Factor,Receptor, TGF-alpha,Receptor, Transforming-Growth Factor alpha,Receptor, Urogastrone,Receptors, Epidermal Growth Factor-Urogastrone,TGF-alpha Receptor,Transforming Growth Factor alpha Receptor,Urogastrone Receptor,c-erbB-1 Protein,erbB-1 Proto-Oncogene Protein,EGF Receptors,Epidermal Growth Factor Receptor Family Proteins,Epidermal Growth Factor Receptor Kinase,HER Family Receptors,Proto-oncogene c-ErbB-1 Protein,Receptor Tyrosine-protein Kinase erbB-1,Receptor, ErbB-1,Receptors, Epidermal Growth Factor,Epidermal Growth Factor Receptor Protein Tyrosine Kinase,ErbB-1 Receptor,Family Receptor, HER,Family Receptors, HER,Proto oncogene c ErbB 1 Protein,Proto-Oncogene Protein, erbB-1,Receptor Tyrosine protein Kinase erbB 1,Receptor, ErbB,Receptor, ErbB 1,Receptor, HER Family,Receptor, TGF alpha,Receptor, Transforming Growth Factor alpha,Receptors, EGF,Receptors, Epidermal Growth Factor Urogastrone,Receptors, ErbB,Receptors, HER Family,c erbB 1 Protein,c-ErbB-1 Protein, Proto-oncogene,erbB 1 Proto Oncogene Protein

Related Publications

D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
March 1994, The Biochemical journal,
D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
October 2006, Molecular biotechnology,
D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
January 1989, Growth factors (Chur, Switzerland),
D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
January 1984, Cell,
D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
September 1994, The American journal of physiology,
D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
January 1990, Experimental cell research,
D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
February 1992, The Journal of cell biology,
D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
September 2004, Endocrinology,
D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
May 2001, The Journal of biological chemistry,
D H Lahaye, and M G Camps, and P E Erp, and P H Peters, and E J Zoelen
April 1986, The Journal of biological chemistry,
Copied contents to your clipboard!