Modulation of stimulus-secretion coupling in single rat gonadotrophs. 1997

P Thomas, and D W Waring
Department of Human Physiology, University of California, Davis 95616, USA.

1. Exocytosis and intracellular [Ca2+] were determined simultaneously in single anterior pituitary gonadotrophs from ovariectomized female rats. Dispersed cells were cultured for 2-4 days with or without 0.2 nM oestradiol-17 beta (E2) before use. Cells were stimulated with either gonadotrophin releasing hormone (GnRH) or by membrane depolarization. Exocytosis was determined from the change in membrane capacitance (Cm) using the perforated-patch whole-cell recording technique. Intracellular [Ca2+] was measured using fura-2 fluorescence. 2. The exocytotic response to 1 nM GnRH was characterized by a wide spectrum of responses, ranging from exocytotic bursts to relatively slow, graded increases that were dependent on the evoked intracellular Ca2+ pattern. A kinetic model is presented that incorporates the observed steep dependence of exocytosis on measured intracellular [Ca2+]; simulated exocytosis reasonably approximated observed exocytotic responses, both kinetically and quantitatively. The model also suggests that the modulatory effects of E2 are brought about either by a change in the Ca2+ sensitivity of exocytosis or by a preferential clustering of docked-secretory granules close to sites of Ca2+ release. The results suggest that in gonadotrophs an oscillatory Ca2+ signal is sensed by the exocytotic apparatus in a modified form of digital encoding. 3. Exocytosis in E2-treated cells was 3-fold greater than in non-treated cells for GnRH-evoked secretion, and 38% greater for depolarization; however, there was no effect of E2 on the intracellular Ca2+ response to either stimulus. The results show that maximum expression of the effect of E2 on exocytosis requires activation of GnRH-dependent pathways.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot

Related Publications

P Thomas, and D W Waring
January 1983, The American journal of physiology,
P Thomas, and D W Waring
November 1987, Biochemical and biophysical research communications,
P Thomas, and D W Waring
November 1978, The American journal of physiology,
P Thomas, and D W Waring
January 1981, Kroc Foundation series,
P Thomas, and D W Waring
January 1983, Progress in brain research,
P Thomas, and D W Waring
March 1984, The Journal of physiology,
P Thomas, and D W Waring
June 1991, European journal of cell biology,
Copied contents to your clipboard!