A modified coaxial compound micropipette for extracellular iontophoresis and intracellular recording: fabrication, performance and theory. 1997

J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
Respiratory Research Group, University of Calgary, Alberta, Canada.

Investigation of the identity and modes of action of neurotransmitters in the mammalian central nervous system can be facilitated by simultaneous intracellular recording of membrane potential and extracellular iontophoresis of agonists and antagonists. We describe here techniques for conveniently constructing a compound microelectrode, originally described by Sonnhof (Pflugers Arch 341, 351-358, 1973), suitable for such studies. The Sonnhof electrode consists of two components, a centraxial micropipette for recording membrane potential surrounded by a cylindrical array of 6 pipettes for iontophoresis. The cylindrical array tapers coaxially and terminates in 6 contiguous, crescent-shaped orifices surrounding the terminal portion of the central pipette, 25 - 50 microm from the tip. Pipettes were constructed from borosilicate glass tubing of 1-mm wall thickness having a 10-mm or 16-mm outer diameter. The resistances, flux and transport numbers for iontophoresis of glycine were measured for pipettes constructed from both sizes of glass. Flux increased with increasing levels of current, and transport number decreased with increasing micropipette resistance. A spherical diffusion model points out the steep dependence of steady state concentration on diffusional distance, stressing the importance of diminishing the distance between the iontophoresis source and the recording site. This is particularly true when brief pulses of current are used.

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
November 1978, British journal of pharmacology,
J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
January 1964, Tsitologiia,
J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
July 1973, Pflugers Archiv : European journal of physiology,
J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
July 1987, Electroencephalography and clinical neurophysiology,
J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
February 1970, The Journal of physiology,
J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
September 1979, The American journal of physiology,
J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
November 2007, Optics express,
J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
October 1979, Journal of neuroscience methods,
J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
February 2014, ChemPlusChem,
J E Remmers, and S A Schultz, and J Wallace, and R Takeda, and A Haji
July 1998, Neuroscience research,
Copied contents to your clipboard!