GABA(A) receptor subunit expression in intrastriatal striatal grafts comparison between normal developing striatum and developing striatal grafts. 1997

I Liste, and H J Caruncho, and M J Guerra, and J L Labandeira-Garcia
Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Spain.

Expression of the alpha1, alpha2 and beta2/3 GABA(A) receptor subunits in maturing cell-suspension striatal grafts and in normal developing striatum was studied by immunocytochemistry. During normal postnatal development, the alpha1 subunit was present in the striatum only at very low density, while the alpha2 and beta2/3 subunits were present with a patchy distribution, in some patches at high density. Double-staining techniques indicated that DARPP-32 (a marker of striatal projection neurons) was not colocalized with alpha1, but was present in some beta2/3-positive areas and all alpha2-positive areas. In striatal grafts, alpha1 immunoreactivity was first detected 2 weeks post-grafting (p.g.), and by 3-10 weeks p.g. the pattern was similar to that observed in mature grafts (1 year p.g.), in which alpha1-immunopositive patches surrounding DARPP-32-positive (i.e. striatum-like) areas are observed. Alpha2 and beta2/3 immunoreactivity was observed within the first week p.g., and by 3-10 weeks p.g. was similar to that observed in mature grafts (i.e. immunoreactivity throughout the graft but with patches of different intensity). During graft maturation there was a marked decline in alpha2 immunoreactivity in DARPP-32-negative areas, as is observed during normal development of the globus pallidus and ventral pallidum. Interestingly, alpha1- and beta2/3-positive fibers (perhaps mostly dendrites) entered DARPP-32-positive patches from DARPP-32-negative areas. This study indicates that the time course of expression of GABA(A) receptor subunits in grafted striatal neurons, closely matches that of morphological maturation of the transplant, that of the development of functional synaptic activity and that of GABA(A) receptor subunit immunoreactivity in normal developing striatum. Our results also suggest that there are significant interactions between DARPP-32-positive and DARPP-32-negative areas with respect to the expression of GABA(A) receptors, and support the suggestion that miniature 'striatopallidal systems' may develop within grafts; such interactions may be important for the functional integration of striatal grafts with the host brain.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010750 Phosphoproteins Phosphoprotein
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

I Liste, and H J Caruncho, and M J Guerra, and J L Labandeira-Garcia
July 1994, Brain research,
I Liste, and H J Caruncho, and M J Guerra, and J L Labandeira-Garcia
April 1999, The Journal of comparative neurology,
I Liste, and H J Caruncho, and M J Guerra, and J L Labandeira-Garcia
January 1990, Progress in brain research,
I Liste, and H J Caruncho, and M J Guerra, and J L Labandeira-Garcia
June 1992, Brain research,
I Liste, and H J Caruncho, and M J Guerra, and J L Labandeira-Garcia
January 2005, Brain research. Developmental brain research,
I Liste, and H J Caruncho, and M J Guerra, and J L Labandeira-Garcia
January 1993, Brain research bulletin,
I Liste, and H J Caruncho, and M J Guerra, and J L Labandeira-Garcia
December 2000, Experimental brain research,
I Liste, and H J Caruncho, and M J Guerra, and J L Labandeira-Garcia
July 2010, Journal of psychiatric research,
Copied contents to your clipboard!