The fidelity of misinsertion and mispair extension throughout DNA synthesis exhibited by mutants of the reverse transcriptase of human immunodeficiency virus type 2 resistant to nucleoside analogs. 1997

R Taube, and O Avidan, and A Hizi
Department of Cell Biology and Histology, Sackler School of Medicine, Tel Aviv University, Israel.

The AIDS-causing retroviruses, human immunodeficiency virus types 1 and type 2 (HIV-1 and HIV-2, respectively) undergo extensive genetic variations, which effect their pathogenesis and resistance to drug therapy. It was postulated that this genetic hypervariability results from high rates of viral replication in conjugation with a relatively low fidelity of DNA synthesis [typical to the reverse transcriptases (RT) of these retroviruses]. As part of studying structure/function relationship in HIV RT, mutational analyses were conducted to identify amino acid residues which are involved in affecting the fidelity of DNA synthesis. The formation of 3'-mispaired DNA due to nucleotide misinsertions, and the subsequent elongation of this mismatched DNA were shown to be major determinants in affecting those substitutions during DNA synthesis (exhibited in vitro by HIV RT). It was interesting to find a correlation between sensitivity to nucleoside analogs (due to the ability to incorporate or reject an incoming analog) and the fidelity of DNA synthesis (which depends on the capacity to incorporate and extend a wrong nucleotide). Such a connection has already been found for several drug-resistant mutants of HIV-1 RT, with an increased fidelity of DNA synthesis relative to the wild-type RT. In the present study we have examined the fidelity of DNA synthesis using the same parameters of misinsertion and mispair extension for five novel drug-resistant mutants of HIV-2 RT; i.e. the single mutants [Val74]RT, [Gly89]RT and [Tyr215]RT and the double mutants [Val74,Tyr215]RT and [Gly89, Tyr215]RT. This comparative study suggests that unlike the Val74 mutant of HIV-1 RT, which was shown earlier to display a substantially enhanced fidelity, the comparable mutant of HIV-2 RT has fidelity similar to that of the wild-type RT. Depending on the assay employed and the DNA sequences extended, most other mutants of HIV-2 RT display moderate effects on the enzyme, leading to mild increases in fidelity of DNA synthesis. This implies a more complex and less distinctive correlation between drug-resistance, misinsertion and mispair extension in HIV-2 RT in contrast to HIV-1 RT, providing evidence for potential biochemical differences between these two related RT.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base

Related Publications

R Taube, and O Avidan, and A Hizi
July 1992, FEBS letters,
R Taube, and O Avidan, and A Hizi
September 2004, The international journal of biochemistry & cell biology,
R Taube, and O Avidan, and A Hizi
October 1988, Journal of virology,
Copied contents to your clipboard!