Identification of the open reading frame for the Pseudomonas putida D-hydantoinase gene and expression of the gene in Escherichia coli. 1998

H R Chien, and Y L Jih, and W Y Yang, and W H Hsu
Department of Microbiology, Chung Shan Medical and Dental College, Taichung, Taiwan.

A DNA fragment containing the gene for D-hydantoinase was cloned from Pseudomonas putida CCRC 12857 into Escherichia coli. The cloned gene contained an open reading frame (ORF) of 1485 nucleotides encoding a protein of 53.4 kDa in which the carboxyl terminal end is longer than that previously deduced from strain DSM 84. This ORF was verified by amino acid sequencing of amino and carboxyl termini, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and amino acid sequence comparison. Deletion analysis revealed that 32 amino acids from the carboxyl terminal end were essential for D-hydantoinase activity. Tagging of six consecutive histidyl residues to the amino terminus or to the carboxyl terminus of the enzyme did not significantly affect D-hydantoinase activity. Under the control of T5lac promoter and lactose induction, the D-hydantoinase activity of transformed E. coli reached 200 U l-1 which is about 20-fold higher than that of gene donor strain.

UI MeSH Term Description Entries
D007785 Lactose A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry. Anhydrous Lactose,Lactose, Anhydrous
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000581 Amidohydrolases Any member of the class of enzymes that catalyze the cleavage of amide bonds and result in the addition of water to the resulting molecules. Amidases,Amidohydrolase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

H R Chien, and Y L Jih, and W Y Yang, and W H Hsu
December 1998, Annals of the New York Academy of Sciences,
H R Chien, and Y L Jih, and W Y Yang, and W H Hsu
April 1985, Science (New York, N.Y.),
H R Chien, and Y L Jih, and W Y Yang, and W H Hsu
June 1988, Journal of virology,
H R Chien, and Y L Jih, and W Y Yang, and W H Hsu
November 1982, Proceedings of the National Academy of Sciences of the United States of America,
H R Chien, and Y L Jih, and W Y Yang, and W H Hsu
July 1985, Biochemical and biophysical research communications,
H R Chien, and Y L Jih, and W Y Yang, and W H Hsu
January 1992, Biochimica et biophysica acta,
H R Chien, and Y L Jih, and W Y Yang, and W H Hsu
April 1983, Journal of bacteriology,
H R Chien, and Y L Jih, and W Y Yang, and W H Hsu
January 2002, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
H R Chien, and Y L Jih, and W Y Yang, and W H Hsu
December 1983, Journal of bacteriology,
Copied contents to your clipboard!