Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. 1976

W Berner, and R Kinne

Basal-lateral plasma membrane vesicles and brush border membrane vesicles were isolated from rat kidney cortex and the uptake of p-aminohippuric acid (PAH) into these vesicles was studied by Millipore filtration techniques. Both membrane preparations take up PAH into an osmotically reactive intravesicular space. The transport across the brush border membrane seems to involve only simple diffusion whereas in the basal-lateral plasma membrane in addition a specific transport system exists which is inhibited competitively by probenecid. The apparent affinity of this transport system for PAH is 5.4 X 10(-4) M and for probenecid 5.4 X 10(-5) M. PAH uptake into basal-lateral plasma membrane vesicles is influenced by alteration of the membrane potential. Maneuvers which render the intravesicular space more positive--as for example replacement of chloride by sulfate in the presence of a sodium gradient directed into the vesicles and addition of valinomycin in the presence of a potassium gradient directed into the vesicles--stimulate the uptake of PAH. Replacement of a sodium chloride gradient by a sodium thiocyanate gradient reduces the uptake probably by reducing the inside positive membrane potential. In the absence of salt gradients anion replacement and replacement of sodium by potassium does not affect PAH transport by basal-lateral plasma membranes. These results suggest that in isolated basal-lateral membranes transfer of PAH across the membrane is accompanied by a transfer of negative charge. They furthermore provide no evidence for the existence of a sodium-PAH cotransport system in this membrane preparation.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011339 Probenecid The prototypical uricosuric agent. It inhibits the renal excretion of organic anions and reduces tubular reabsorption of urate. Probenecid has also been used to treat patients with renal impairment, and, because it reduces the renal tubular excretion of other drugs, has been used as an adjunct to antibacterial therapy. Benecid,Benemid,Benuryl,Pro-Cid,Probecid,Probenecid Weimer
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D000618 Aminohippuric Acids A group of glycine amides of aminobenzoic acids. Acids, Aminohippuric

Related Publications

W Berner, and R Kinne
October 1979, The American journal of physiology,
W Berner, and R Kinne
September 2001, Journal of the American Society of Nephrology : JASN,
W Berner, and R Kinne
June 1985, Archives internationales de pharmacodynamie et de therapie,
W Berner, and R Kinne
August 1986, Kidney international,
W Berner, and R Kinne
August 1980, Biochimica et biophysica acta,
W Berner, and R Kinne
June 1985, The American journal of physiology,
Copied contents to your clipboard!