Evidence of basolateral water permeability regulation in amphibian urinary bladder. 1997

O A Candia, and A Mia, and T Yorio
Department of Ophthalmology, Mt Sinai School of Medicine, New York, NY 10029, USA.

It is well known that arginine vasopressin (AVP) produces up to a 40-fold increase (0.1 to 4.0 microL/min.cm2) in net water flux across the amphibian urinary bladder under an osmotic gradient (mucosal side 10% hypotonic). No AVP effect is observed when the gradient is in the opposite direction (serosal hypotonic). Similar asymmetrical behavior to osmotic gradients occurs in the frog corneal epithelium. This rectification phenomenon has not been satisfactorily explained. We measured net water fluxes in bladder sacs and confirmed that AVP has no effect when the serosal bath is hypotonic. We reasoned that the 'abnormal' serosal osmolarity was inducing changes in membrane water permeability, the very parameter being measured. Thus, we studied the effect of solution osmolarity on diffusional water flow (Jdw) across the frog bladder using 3H2O. As expected, AVP doubled Jdw (in either direction from 12 to 21 microL/min.cm2) when the serosal solution was iso-osmolar regardless of mucosal osmolarity. However, in the AVP-stimulated bladders, hypo-osmolarity of the serosal solution reduced Jdw by 42%, an effect that was reversible when normal osmolarity was re-established. Amphotericin B (instead of AVP) was used to irreversibly increase the permeability to water of the apical membrane. Under these conditions, basolateral hypotonicity also reversibly decreased Jdw by 32%, suggesting the basolateral membrane as the site where permeability is reduced. SEM and TEM of the tissue shows extreme swelling when it was exposed to serosal hypotonicity with or without AVP and typical surface morphology changes following hormone stimulation. We conclude that this swelling may initiate a signaling mechanism that reduces basolateral water permeability. These findings constitute evidence of basolateral water channel permeability regulation, which can also contribute to cell volume regulation.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D012076 Renal Agents Drugs used for their effects on the kidneys' regulation of body fluid composition and volume. The most commonly used are the diuretics. Also included are drugs used for their antidiuretic and uricosuric actions, for their effects on the kidneys' clearance of other drugs, and for diagnosis of renal function. Agents, Renal
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000666 Amphotericin B Macrolide antifungal antibiotic produced by Streptomyces nodosus obtained from soil of the Orinoco river region of Venezuela. Amphocil,Amphotericin,Amphotericin B Cholesterol Dispersion,Amphotericin B Colloidal Dispersion,Fungizone
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

O A Candia, and A Mia, and T Yorio
December 1986, The Journal of physiology,
O A Candia, and A Mia, and T Yorio
October 2000, The Journal of physiology,
O A Candia, and A Mia, and T Yorio
February 1985, The American journal of physiology,
O A Candia, and A Mia, and T Yorio
January 1981, Annals of the New York Academy of Sciences,
O A Candia, and A Mia, and T Yorio
January 1985, Biology of the cell,
O A Candia, and A Mia, and T Yorio
October 1972, The Journal of endocrinology,
O A Candia, and A Mia, and T Yorio
January 1964, Acta biologica et medica Germanica,
O A Candia, and A Mia, and T Yorio
January 1972, Biochimica et biophysica acta,
O A Candia, and A Mia, and T Yorio
January 1988, Comparative biochemistry and physiology. A, Comparative physiology,
O A Candia, and A Mia, and T Yorio
April 1997, Biochimica et biophysica acta,
Copied contents to your clipboard!